Metamath Proof Explorer


Theorem cbvabv

Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999) Require x , y be disjoint to avoid ax-11 and ax-13 . (Revised by Steven Nguyen, 4-Dec-2022)

Ref Expression
Hypothesis cbvabv.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvabv { 𝑥𝜑 } = { 𝑦𝜓 }

Proof

Step Hyp Ref Expression
1 cbvabv.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 sbco2vv ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 )
3 1 sbievw ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
4 3 sbbii ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 )
5 2 4 bitr3i ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 )
6 df-clab ( 𝑧 ∈ { 𝑥𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 )
7 df-clab ( 𝑧 ∈ { 𝑦𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 )
8 5 6 7 3bitr4i ( 𝑧 ∈ { 𝑥𝜑 } ↔ 𝑧 ∈ { 𝑦𝜓 } )
9 8 eqriv { 𝑥𝜑 } = { 𝑦𝜓 }