Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
Assertion | sbbii | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
2 | 1 | biimpi | ⊢ ( 𝜑 → 𝜓 ) |
3 | 2 | sbimi | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → [ 𝑡 / 𝑥 ] 𝜓 ) |
4 | 1 | biimpri | ⊢ ( 𝜓 → 𝜑 ) |
5 | 4 | sbimi | ⊢ ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜑 ) |
6 | 3 5 | impbii | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] 𝜓 ) |