Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| Assertion | sbbii | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | 1 | biimpi | ⊢ ( 𝜑 → 𝜓 ) |
| 3 | 2 | sbimi | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → [ 𝑡 / 𝑥 ] 𝜓 ) |
| 4 | 1 | biimpri | ⊢ ( 𝜓 → 𝜑 ) |
| 5 | 4 | sbimi | ⊢ ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜑 ) |
| 6 | 3 5 | impbii | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] 𝜓 ) |