Metamath Proof Explorer


Theorem sbbii

Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993)

Ref Expression
Hypothesis sbbii.1 ( 𝜑𝜓 )
Assertion sbbii ( [ 𝑡 / 𝑥 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 sbbii.1 ( 𝜑𝜓 )
2 1 biimpi ( 𝜑𝜓 )
3 2 sbimi ( [ 𝑡 / 𝑥 ] 𝜑 → [ 𝑡 / 𝑥 ] 𝜓 )
4 1 biimpri ( 𝜓𝜑 )
5 4 sbimi ( [ 𝑡 / 𝑥 ] 𝜓 → [ 𝑡 / 𝑥 ] 𝜑 )
6 3 5 impbii ( [ 𝑡 / 𝑥 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] 𝜓 )