Metamath Proof Explorer


Theorem cbvabw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvabw.1 𝑦 𝜑
cbvabw.2 𝑥 𝜓
cbvabw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvabw { 𝑥𝜑 } = { 𝑦𝜓 }

Proof

Step Hyp Ref Expression
1 cbvabw.1 𝑦 𝜑
2 cbvabw.2 𝑥 𝜓
3 cbvabw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 2 3 sbievg ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 )
5 df-clab ( 𝑧 ∈ { 𝑥𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 )
6 df-clab ( 𝑧 ∈ { 𝑦𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 )
7 4 5 6 3bitr4i ( 𝑧 ∈ { 𝑥𝜑 } ↔ 𝑧 ∈ { 𝑦𝜓 } )
8 7 eqriv { 𝑥𝜑 } = { 𝑦𝜓 }