Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqriv.1 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) | |
Assertion | eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqriv.1 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) | |
2 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
3 | 2 1 | mpgbir | ⊢ 𝐴 = 𝐵 |