Metamath Proof Explorer


Theorem eqriv

Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis eqriv.1 xAxB
Assertion eqriv A=B

Proof

Step Hyp Ref Expression
1 eqriv.1 xAxB
2 dfcleq A=BxxAxB
3 2 1 mpgbir A=B