Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqriv.1 | |- ( x e. A <-> x e. B ) |
|
| Assertion | eqriv | |- A = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqriv.1 | |- ( x e. A <-> x e. B ) |
|
| 2 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
| 3 | 2 1 | mpgbir | |- A = B |