Metamath Proof Explorer


Theorem cbvabw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvabw.1 y φ
cbvabw.2 x ψ
cbvabw.3 x = y φ ψ
Assertion cbvabw x | φ = y | ψ

Proof

Step Hyp Ref Expression
1 cbvabw.1 y φ
2 cbvabw.2 x ψ
3 cbvabw.3 x = y φ ψ
4 nfv y x = w
5 4 1 nfim y x = w φ
6 nfv x y = w
7 6 2 nfim x y = w ψ
8 equequ1 x = y x = w y = w
9 8 3 imbi12d x = y x = w φ y = w ψ
10 5 7 9 cbvalv1 x x = w φ y y = w ψ
11 10 imbi2i w = z x x = w φ w = z y y = w ψ
12 11 albii w w = z x x = w φ w w = z y y = w ψ
13 df-sb z x φ w w = z x x = w φ
14 df-sb z y ψ w w = z y y = w ψ
15 12 13 14 3bitr4i z x φ z y ψ
16 df-clab z x | φ z x φ
17 df-clab z y | ψ z y ψ
18 15 16 17 3bitr4i z x | φ z y | ψ
19 18 eqriv x | φ = y | ψ