Metamath Proof Explorer


Theorem cbvabw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvabw.1 yφ
cbvabw.2 xψ
cbvabw.3 x=yφψ
Assertion cbvabw x|φ=y|ψ

Proof

Step Hyp Ref Expression
1 cbvabw.1 yφ
2 cbvabw.2 xψ
3 cbvabw.3 x=yφψ
4 1 2 3 cbvsbvf zxφzyψ
5 df-clab zx|φzxφ
6 df-clab zy|ψzyψ
7 4 5 6 3bitr4i zx|φzy|ψ
8 7 eqriv x|φ=y|ψ