Metamath Proof Explorer


Theorem reclem4pr

Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis reclempr.1 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) }
Assertion reclem4pr ( 𝐴P → ( 𝐴 ·P 𝐵 ) = 1P )

Proof

Step Hyp Ref Expression
1 reclempr.1 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) }
2 1 reclem2pr ( 𝐴P𝐵P )
3 df-mp ·P = ( 𝑦P , 𝑤P ↦ { 𝑢 ∣ ∃ 𝑓𝑦𝑔𝑤 𝑢 = ( 𝑓 ·Q 𝑔 ) } )
4 mulclnq ( ( 𝑓Q𝑔Q ) → ( 𝑓 ·Q 𝑔 ) ∈ Q )
5 3 4 genpelv ( ( 𝐴P𝐵P ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧𝐴𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) )
6 2 5 mpdan ( 𝐴P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧𝐴𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) )
7 1 abeq2i ( 𝑥𝐵 ↔ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) )
8 ltrelnq <Q ⊆ ( Q × Q )
9 8 brel ( 𝑥 <Q 𝑦 → ( 𝑥Q𝑦Q ) )
10 9 simprd ( 𝑥 <Q 𝑦𝑦Q )
11 elprnq ( ( 𝐴P𝑧𝐴 ) → 𝑧Q )
12 ltmnq ( 𝑧Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) )
13 11 12 syl ( ( 𝐴P𝑧𝐴 ) → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) )
14 13 biimpd ( ( 𝐴P𝑧𝐴 ) → ( 𝑥 <Q 𝑦 → ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) )
15 14 adantr ( ( ( 𝐴P𝑧𝐴 ) ∧ 𝑦Q ) → ( 𝑥 <Q 𝑦 → ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ) )
16 recclnq ( 𝑦Q → ( *Q𝑦 ) ∈ Q )
17 prub ( ( ( 𝐴P𝑧𝐴 ) ∧ ( *Q𝑦 ) ∈ Q ) → ( ¬ ( *Q𝑦 ) ∈ 𝐴𝑧 <Q ( *Q𝑦 ) ) )
18 16 17 sylan2 ( ( ( 𝐴P𝑧𝐴 ) ∧ 𝑦Q ) → ( ¬ ( *Q𝑦 ) ∈ 𝐴𝑧 <Q ( *Q𝑦 ) ) )
19 ltmnq ( 𝑦Q → ( 𝑧 <Q ( *Q𝑦 ) ↔ ( 𝑦 ·Q 𝑧 ) <Q ( 𝑦 ·Q ( *Q𝑦 ) ) ) )
20 mulcomnq ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 )
21 20 a1i ( 𝑦Q → ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) )
22 recidnq ( 𝑦Q → ( 𝑦 ·Q ( *Q𝑦 ) ) = 1Q )
23 21 22 breq12d ( 𝑦Q → ( ( 𝑦 ·Q 𝑧 ) <Q ( 𝑦 ·Q ( *Q𝑦 ) ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) )
24 19 23 bitrd ( 𝑦Q → ( 𝑧 <Q ( *Q𝑦 ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) )
25 24 adantl ( ( ( 𝐴P𝑧𝐴 ) ∧ 𝑦Q ) → ( 𝑧 <Q ( *Q𝑦 ) ↔ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) )
26 18 25 sylibd ( ( ( 𝐴P𝑧𝐴 ) ∧ 𝑦Q ) → ( ¬ ( *Q𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑦 ) <Q 1Q ) )
27 15 26 anim12d ( ( ( 𝐴P𝑧𝐴 ) ∧ 𝑦Q ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) → ( ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ∧ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) ) )
28 ltsonq <Q Or Q
29 28 8 sotri ( ( ( 𝑧 ·Q 𝑥 ) <Q ( 𝑧 ·Q 𝑦 ) ∧ ( 𝑧 ·Q 𝑦 ) <Q 1Q ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q )
30 27 29 syl6 ( ( ( 𝐴P𝑧𝐴 ) ∧ 𝑦Q ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) )
31 30 exp4b ( ( 𝐴P𝑧𝐴 ) → ( 𝑦Q → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) ) )
32 10 31 syl5 ( ( 𝐴P𝑧𝐴 ) → ( 𝑥 <Q 𝑦 → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) ) )
33 32 pm2.43d ( ( 𝐴P𝑧𝐴 ) → ( 𝑥 <Q 𝑦 → ( ¬ ( *Q𝑦 ) ∈ 𝐴 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) ) )
34 33 impd ( ( 𝐴P𝑧𝐴 ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) )
35 34 exlimdv ( ( 𝐴P𝑧𝐴 ) → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q𝑦 ) ∈ 𝐴 ) → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) )
36 7 35 syl5bi ( ( 𝐴P𝑧𝐴 ) → ( 𝑥𝐵 → ( 𝑧 ·Q 𝑥 ) <Q 1Q ) )
37 breq1 ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → ( 𝑤 <Q 1Q ↔ ( 𝑧 ·Q 𝑥 ) <Q 1Q ) )
38 37 biimprcd ( ( 𝑧 ·Q 𝑥 ) <Q 1Q → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) )
39 36 38 syl6 ( ( 𝐴P𝑧𝐴 ) → ( 𝑥𝐵 → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) )
40 39 expimpd ( 𝐴P → ( ( 𝑧𝐴𝑥𝐵 ) → ( 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) ) )
41 40 rexlimdvv ( 𝐴P → ( ∃ 𝑧𝐴𝑥𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) → 𝑤 <Q 1Q ) )
42 6 41 sylbid ( 𝐴P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) → 𝑤 <Q 1Q ) )
43 df-1p 1P = { 𝑤𝑤 <Q 1Q }
44 43 abeq2i ( 𝑤 ∈ 1P𝑤 <Q 1Q )
45 42 44 syl6ibr ( 𝐴P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) → 𝑤 ∈ 1P ) )
46 45 ssrdv ( 𝐴P → ( 𝐴 ·P 𝐵 ) ⊆ 1P )
47 1 reclem3pr ( 𝐴P → 1P ⊆ ( 𝐴 ·P 𝐵 ) )
48 46 47 eqssd ( 𝐴P → ( 𝐴 ·P 𝐵 ) = 1P )