| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reclempr.1 | ⊢ 𝐵  =  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) } | 
						
							| 2 | 1 | reclem2pr | ⊢ ( 𝐴  ∈  P  →  𝐵  ∈  P ) | 
						
							| 3 |  | df-mp | ⊢  ·P   =  ( 𝑦  ∈  P ,  𝑤  ∈  P  ↦  { 𝑢  ∣  ∃ 𝑓  ∈  𝑦 ∃ 𝑔  ∈  𝑤 𝑢  =  ( 𝑓  ·Q  𝑔 ) } ) | 
						
							| 4 |  | mulclnq | ⊢ ( ( 𝑓  ∈  Q  ∧  𝑔  ∈  Q )  →  ( 𝑓  ·Q  𝑔 )  ∈  Q ) | 
						
							| 5 | 3 4 | genpelv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑤  ∈  ( 𝐴  ·P  𝐵 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) ) | 
						
							| 6 | 2 5 | mpdan | ⊢ ( 𝐴  ∈  P  →  ( 𝑤  ∈  ( 𝐴  ·P  𝐵 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) ) | 
						
							| 7 | 1 | eqabri | ⊢ ( 𝑥  ∈  𝐵  ↔  ∃ 𝑦 ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) ) | 
						
							| 8 |  | ltrelnq | ⊢  <Q   ⊆  ( Q  ×  Q ) | 
						
							| 9 | 8 | brel | ⊢ ( 𝑥  <Q  𝑦  →  ( 𝑥  ∈  Q  ∧  𝑦  ∈  Q ) ) | 
						
							| 10 | 9 | simprd | ⊢ ( 𝑥  <Q  𝑦  →  𝑦  ∈  Q ) | 
						
							| 11 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈  Q ) | 
						
							| 12 |  | ltmnq | ⊢ ( 𝑧  ∈  Q  →  ( 𝑥  <Q  𝑦  ↔  ( 𝑧  ·Q  𝑥 )  <Q  ( 𝑧  ·Q  𝑦 ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  <Q  𝑦  ↔  ( 𝑧  ·Q  𝑥 )  <Q  ( 𝑧  ·Q  𝑦 ) ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  <Q  𝑦  →  ( 𝑧  ·Q  𝑥 )  <Q  ( 𝑧  ·Q  𝑦 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  ∧  𝑦  ∈  Q )  →  ( 𝑥  <Q  𝑦  →  ( 𝑧  ·Q  𝑥 )  <Q  ( 𝑧  ·Q  𝑦 ) ) ) | 
						
							| 16 |  | recclnq | ⊢ ( 𝑦  ∈  Q  →  ( *Q ‘ 𝑦 )  ∈  Q ) | 
						
							| 17 |  | prub | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  ∧  ( *Q ‘ 𝑦 )  ∈  Q )  →  ( ¬  ( *Q ‘ 𝑦 )  ∈  𝐴  →  𝑧  <Q  ( *Q ‘ 𝑦 ) ) ) | 
						
							| 18 | 16 17 | sylan2 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  ∧  𝑦  ∈  Q )  →  ( ¬  ( *Q ‘ 𝑦 )  ∈  𝐴  →  𝑧  <Q  ( *Q ‘ 𝑦 ) ) ) | 
						
							| 19 |  | ltmnq | ⊢ ( 𝑦  ∈  Q  →  ( 𝑧  <Q  ( *Q ‘ 𝑦 )  ↔  ( 𝑦  ·Q  𝑧 )  <Q  ( 𝑦  ·Q  ( *Q ‘ 𝑦 ) ) ) ) | 
						
							| 20 |  | mulcomnq | ⊢ ( 𝑦  ·Q  𝑧 )  =  ( 𝑧  ·Q  𝑦 ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝑦  ∈  Q  →  ( 𝑦  ·Q  𝑧 )  =  ( 𝑧  ·Q  𝑦 ) ) | 
						
							| 22 |  | recidnq | ⊢ ( 𝑦  ∈  Q  →  ( 𝑦  ·Q  ( *Q ‘ 𝑦 ) )  =  1Q ) | 
						
							| 23 | 21 22 | breq12d | ⊢ ( 𝑦  ∈  Q  →  ( ( 𝑦  ·Q  𝑧 )  <Q  ( 𝑦  ·Q  ( *Q ‘ 𝑦 ) )  ↔  ( 𝑧  ·Q  𝑦 )  <Q  1Q ) ) | 
						
							| 24 | 19 23 | bitrd | ⊢ ( 𝑦  ∈  Q  →  ( 𝑧  <Q  ( *Q ‘ 𝑦 )  ↔  ( 𝑧  ·Q  𝑦 )  <Q  1Q ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  ∧  𝑦  ∈  Q )  →  ( 𝑧  <Q  ( *Q ‘ 𝑦 )  ↔  ( 𝑧  ·Q  𝑦 )  <Q  1Q ) ) | 
						
							| 26 | 18 25 | sylibd | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  ∧  𝑦  ∈  Q )  →  ( ¬  ( *Q ‘ 𝑦 )  ∈  𝐴  →  ( 𝑧  ·Q  𝑦 )  <Q  1Q ) ) | 
						
							| 27 | 15 26 | anim12d | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  ∧  𝑦  ∈  Q )  →  ( ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  →  ( ( 𝑧  ·Q  𝑥 )  <Q  ( 𝑧  ·Q  𝑦 )  ∧  ( 𝑧  ·Q  𝑦 )  <Q  1Q ) ) ) | 
						
							| 28 |  | ltsonq | ⊢  <Q   Or  Q | 
						
							| 29 | 28 8 | sotri | ⊢ ( ( ( 𝑧  ·Q  𝑥 )  <Q  ( 𝑧  ·Q  𝑦 )  ∧  ( 𝑧  ·Q  𝑦 )  <Q  1Q )  →  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) | 
						
							| 30 | 27 29 | syl6 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  ∧  𝑦  ∈  Q )  →  ( ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  →  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) ) | 
						
							| 31 | 30 | exp4b | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( 𝑦  ∈  Q  →  ( 𝑥  <Q  𝑦  →  ( ¬  ( *Q ‘ 𝑦 )  ∈  𝐴  →  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) ) ) ) | 
						
							| 32 | 10 31 | syl5 | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  <Q  𝑦  →  ( 𝑥  <Q  𝑦  →  ( ¬  ( *Q ‘ 𝑦 )  ∈  𝐴  →  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) ) ) ) | 
						
							| 33 | 32 | pm2.43d | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  <Q  𝑦  →  ( ¬  ( *Q ‘ 𝑦 )  ∈  𝐴  →  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) ) ) | 
						
							| 34 | 33 | impd | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  →  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) ) | 
						
							| 35 | 34 | exlimdv | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑦 ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  →  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) ) | 
						
							| 36 | 7 35 | biimtrid | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  ∈  𝐵  →  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) ) | 
						
							| 37 |  | breq1 | ⊢ ( 𝑤  =  ( 𝑧  ·Q  𝑥 )  →  ( 𝑤  <Q  1Q  ↔  ( 𝑧  ·Q  𝑥 )  <Q  1Q ) ) | 
						
							| 38 | 37 | biimprcd | ⊢ ( ( 𝑧  ·Q  𝑥 )  <Q  1Q  →  ( 𝑤  =  ( 𝑧  ·Q  𝑥 )  →  𝑤  <Q  1Q ) ) | 
						
							| 39 | 36 38 | syl6 | ⊢ ( ( 𝐴  ∈  P  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  ∈  𝐵  →  ( 𝑤  =  ( 𝑧  ·Q  𝑥 )  →  𝑤  <Q  1Q ) ) ) | 
						
							| 40 | 39 | expimpd | ⊢ ( 𝐴  ∈  P  →  ( ( 𝑧  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  ( 𝑤  =  ( 𝑧  ·Q  𝑥 )  →  𝑤  <Q  1Q ) ) ) | 
						
							| 41 | 40 | rexlimdvv | ⊢ ( 𝐴  ∈  P  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 )  →  𝑤  <Q  1Q ) ) | 
						
							| 42 | 6 41 | sylbid | ⊢ ( 𝐴  ∈  P  →  ( 𝑤  ∈  ( 𝐴  ·P  𝐵 )  →  𝑤  <Q  1Q ) ) | 
						
							| 43 |  | df-1p | ⊢ 1P  =  { 𝑤  ∣  𝑤  <Q  1Q } | 
						
							| 44 | 43 | eqabri | ⊢ ( 𝑤  ∈  1P  ↔  𝑤  <Q  1Q ) | 
						
							| 45 | 42 44 | imbitrrdi | ⊢ ( 𝐴  ∈  P  →  ( 𝑤  ∈  ( 𝐴  ·P  𝐵 )  →  𝑤  ∈  1P ) ) | 
						
							| 46 | 45 | ssrdv | ⊢ ( 𝐴  ∈  P  →  ( 𝐴  ·P  𝐵 )  ⊆  1P ) | 
						
							| 47 | 1 | reclem3pr | ⊢ ( 𝐴  ∈  P  →  1P  ⊆  ( 𝐴  ·P  𝐵 ) ) | 
						
							| 48 | 46 47 | eqssd | ⊢ ( 𝐴  ∈  P  →  ( 𝐴  ·P  𝐵 )  =  1P ) |