| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reclempr.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } |
| 2 |
|
prpssnq |
⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q ) |
| 3 |
|
pssnel |
⊢ ( 𝐴 ⊊ Q → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
| 4 |
|
recclnq |
⊢ ( 𝑥 ∈ Q → ( *Q ‘ 𝑥 ) ∈ Q ) |
| 5 |
|
nsmallnq |
⊢ ( ( *Q ‘ 𝑥 ) ∈ Q → ∃ 𝑧 𝑧 <Q ( *Q ‘ 𝑥 ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑥 ∈ Q → ∃ 𝑧 𝑧 <Q ( *Q ‘ 𝑥 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 𝑧 <Q ( *Q ‘ 𝑥 ) ) |
| 8 |
|
recrecnq |
⊢ ( 𝑥 ∈ Q → ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 10 |
9
|
notbid |
⊢ ( 𝑥 ∈ Q → ( ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝑥 ∈ Q → ( ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) ↔ ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 12 |
|
fvex |
⊢ ( *Q ‘ 𝑥 ) ∈ V |
| 13 |
|
breq2 |
⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( 𝑧 <Q 𝑦 ↔ 𝑧 <Q ( *Q ‘ 𝑥 ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( *Q ‘ 𝑦 ) = ( *Q ‘ ( *Q ‘ 𝑥 ) ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( ( *Q ‘ 𝑦 ) ∈ 𝐴 ↔ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) ) |
| 16 |
15
|
notbid |
⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ↔ ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) ) |
| 17 |
13 16
|
anbi12d |
⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) ) ) |
| 18 |
12 17
|
spcev |
⊢ ( ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) → ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 19 |
11 18
|
biimtrrdi |
⊢ ( 𝑥 ∈ Q → ( ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 20 |
|
vex |
⊢ 𝑧 ∈ V |
| 21 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 <Q 𝑦 ↔ 𝑧 <Q 𝑦 ) ) |
| 22 |
21
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 23 |
22
|
exbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 24 |
20 23 1
|
elab2 |
⊢ ( 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 25 |
19 24
|
imbitrrdi |
⊢ ( 𝑥 ∈ Q → ( ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) ) |
| 26 |
25
|
expcomd |
⊢ ( 𝑥 ∈ Q → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑧 <Q ( *Q ‘ 𝑥 ) → 𝑧 ∈ 𝐵 ) ) ) |
| 27 |
26
|
imp |
⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑧 <Q ( *Q ‘ 𝑥 ) → 𝑧 ∈ 𝐵 ) ) |
| 28 |
27
|
eximdv |
⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 𝑧 <Q ( *Q ‘ 𝑥 ) → ∃ 𝑧 𝑧 ∈ 𝐵 ) ) |
| 29 |
7 28
|
mpd |
⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 𝑧 ∈ 𝐵 ) |
| 30 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐵 ) |
| 31 |
29 30
|
sylibr |
⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
| 32 |
31
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
| 33 |
2 3 32
|
3syl |
⊢ ( 𝐴 ∈ P → 𝐵 ≠ ∅ ) |
| 34 |
|
0pss |
⊢ ( ∅ ⊊ 𝐵 ↔ 𝐵 ≠ ∅ ) |
| 35 |
33 34
|
sylibr |
⊢ ( 𝐴 ∈ P → ∅ ⊊ 𝐵 ) |
| 36 |
|
prn0 |
⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) |
| 37 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ Q ) |
| 38 |
|
recrecnq |
⊢ ( 𝑧 ∈ Q → ( *Q ‘ ( *Q ‘ 𝑧 ) ) = 𝑧 ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑧 ∈ Q → ( ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 40 |
39
|
anbi2d |
⊢ ( 𝑧 ∈ Q → ( ( 𝐴 ∈ P ∧ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 41 |
37 40
|
syl |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐴 ∈ P ∧ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 42 |
|
fvex |
⊢ ( *Q ‘ 𝑧 ) ∈ V |
| 43 |
|
fveq2 |
⊢ ( 𝑥 = ( *Q ‘ 𝑧 ) → ( *Q ‘ 𝑥 ) = ( *Q ‘ ( *Q ‘ 𝑧 ) ) ) |
| 44 |
43
|
eleq1d |
⊢ ( 𝑥 = ( *Q ‘ 𝑧 ) → ( ( *Q ‘ 𝑥 ) ∈ 𝐴 ↔ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) ) |
| 45 |
44
|
anbi2d |
⊢ ( 𝑥 = ( *Q ‘ 𝑧 ) → ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) ) ) |
| 46 |
42 45
|
spcev |
⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) → ∃ 𝑥 ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 47 |
41 46
|
biimtrrdi |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 48 |
47
|
pm2.43i |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 49 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ( *Q ‘ 𝑥 ) ∈ Q ) |
| 50 |
|
dmrecnq |
⊢ dom *Q = Q |
| 51 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
| 52 |
50 51
|
ndmfvrcl |
⊢ ( ( *Q ‘ 𝑥 ) ∈ Q → 𝑥 ∈ Q ) |
| 53 |
49 52
|
syl |
⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → 𝑥 ∈ Q ) |
| 54 |
|
ltrnq |
⊢ ( 𝑥 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ) |
| 55 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ( ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 56 |
54 55
|
biimtrid |
⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 57 |
56
|
alrimiv |
⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ∀ 𝑦 ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 58 |
1
|
eqabri |
⊢ ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 59 |
|
exanali |
⊢ ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 60 |
58 59
|
bitri |
⊢ ( 𝑥 ∈ 𝐵 ↔ ¬ ∀ 𝑦 ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 61 |
60
|
con2bii |
⊢ ( ∀ 𝑦 ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ¬ 𝑥 ∈ 𝐵 ) |
| 62 |
57 61
|
sylib |
⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 63 |
53 62
|
jca |
⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 64 |
63
|
eximi |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 65 |
48 64
|
syl |
⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 66 |
65
|
ex |
⊢ ( 𝐴 ∈ P → ( 𝑧 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 67 |
66
|
exlimdv |
⊢ ( 𝐴 ∈ P → ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 68 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 69 |
|
nss |
⊢ ( ¬ Q ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 70 |
67 68 69
|
3imtr4g |
⊢ ( 𝐴 ∈ P → ( 𝐴 ≠ ∅ → ¬ Q ⊆ 𝐵 ) ) |
| 71 |
36 70
|
mpd |
⊢ ( 𝐴 ∈ P → ¬ Q ⊆ 𝐵 ) |
| 72 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
| 73 |
72
|
brel |
⊢ ( 𝑥 <Q 𝑦 → ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ) |
| 74 |
73
|
simpld |
⊢ ( 𝑥 <Q 𝑦 → 𝑥 ∈ Q ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑥 ∈ Q ) |
| 76 |
75
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑥 ∈ Q ) |
| 77 |
58 76
|
sylbi |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ Q ) |
| 78 |
77
|
ssriv |
⊢ 𝐵 ⊆ Q |
| 79 |
71 78
|
jctil |
⊢ ( 𝐴 ∈ P → ( 𝐵 ⊆ Q ∧ ¬ Q ⊆ 𝐵 ) ) |
| 80 |
|
dfpss3 |
⊢ ( 𝐵 ⊊ Q ↔ ( 𝐵 ⊆ Q ∧ ¬ Q ⊆ 𝐵 ) ) |
| 81 |
79 80
|
sylibr |
⊢ ( 𝐴 ∈ P → 𝐵 ⊊ Q ) |
| 82 |
35 81
|
jca |
⊢ ( 𝐴 ∈ P → ( ∅ ⊊ 𝐵 ∧ 𝐵 ⊊ Q ) ) |
| 83 |
|
ltsonq |
⊢ <Q Or Q |
| 84 |
83 72
|
sotri |
⊢ ( ( 𝑧 <Q 𝑥 ∧ 𝑥 <Q 𝑦 ) → 𝑧 <Q 𝑦 ) |
| 85 |
84
|
ex |
⊢ ( 𝑧 <Q 𝑥 → ( 𝑥 <Q 𝑦 → 𝑧 <Q 𝑦 ) ) |
| 86 |
85
|
anim1d |
⊢ ( 𝑧 <Q 𝑥 → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 87 |
86
|
eximdv |
⊢ ( 𝑧 <Q 𝑥 → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 88 |
87 58 24
|
3imtr4g |
⊢ ( 𝑧 <Q 𝑥 → ( 𝑥 ∈ 𝐵 → 𝑧 ∈ 𝐵 ) ) |
| 89 |
88
|
com12 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ) |
| 90 |
89
|
alrimiv |
⊢ ( 𝑥 ∈ 𝐵 → ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ) |
| 91 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) |
| 92 |
91
|
nfab |
⊢ Ⅎ 𝑦 { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } |
| 93 |
1 92
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐵 |
| 94 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 <Q 𝑧 |
| 95 |
93 94
|
nfrexw |
⊢ Ⅎ 𝑦 ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 |
| 96 |
|
19.8a |
⊢ ( ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 97 |
96 24
|
sylibr |
⊢ ( ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 98 |
97
|
adantll |
⊢ ( ( ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 99 |
|
simpll |
⊢ ( ( ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑥 <Q 𝑧 ) |
| 100 |
98 99
|
jca |
⊢ ( ( ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 101 |
100
|
expcom |
⊢ ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 102 |
101
|
eximdv |
⊢ ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( ∃ 𝑧 ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) → ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 103 |
|
ltbtwnnq |
⊢ ( 𝑥 <Q 𝑦 ↔ ∃ 𝑧 ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) ) |
| 104 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 105 |
102 103 104
|
3imtr4g |
⊢ ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑥 <Q 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) ) |
| 106 |
105
|
impcom |
⊢ ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) |
| 107 |
95 106
|
exlimi |
⊢ ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) |
| 108 |
58 107
|
sylbi |
⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) |
| 109 |
90 108
|
jca |
⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) ) |
| 110 |
109
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) |
| 111 |
|
elnp |
⊢ ( 𝐵 ∈ P ↔ ( ( ∅ ⊊ 𝐵 ∧ 𝐵 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) ) ) |
| 112 |
82 110 111
|
sylanblrc |
⊢ ( 𝐴 ∈ P → 𝐵 ∈ P ) |