Metamath Proof Explorer


Theorem reclem2pr

Description: Lemma for Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis reclempr.1 B=x|yx<𝑸y¬*𝑸yA
Assertion reclem2pr A𝑷B𝑷

Proof

Step Hyp Ref Expression
1 reclempr.1 B=x|yx<𝑸y¬*𝑸yA
2 prpssnq A𝑷A𝑸
3 pssnel A𝑸xx𝑸¬xA
4 recclnq x𝑸*𝑸x𝑸
5 nsmallnq *𝑸x𝑸zz<𝑸*𝑸x
6 4 5 syl x𝑸zz<𝑸*𝑸x
7 6 adantr x𝑸¬xAzz<𝑸*𝑸x
8 recrecnq x𝑸*𝑸*𝑸x=x
9 8 eleq1d x𝑸*𝑸*𝑸xAxA
10 9 notbid x𝑸¬*𝑸*𝑸xA¬xA
11 10 anbi2d x𝑸z<𝑸*𝑸x¬*𝑸*𝑸xAz<𝑸*𝑸x¬xA
12 fvex *𝑸xV
13 breq2 y=*𝑸xz<𝑸yz<𝑸*𝑸x
14 fveq2 y=*𝑸x*𝑸y=*𝑸*𝑸x
15 14 eleq1d y=*𝑸x*𝑸yA*𝑸*𝑸xA
16 15 notbid y=*𝑸x¬*𝑸yA¬*𝑸*𝑸xA
17 13 16 anbi12d y=*𝑸xz<𝑸y¬*𝑸yAz<𝑸*𝑸x¬*𝑸*𝑸xA
18 12 17 spcev z<𝑸*𝑸x¬*𝑸*𝑸xAyz<𝑸y¬*𝑸yA
19 11 18 syl6bir x𝑸z<𝑸*𝑸x¬xAyz<𝑸y¬*𝑸yA
20 vex zV
21 breq1 x=zx<𝑸yz<𝑸y
22 21 anbi1d x=zx<𝑸y¬*𝑸yAz<𝑸y¬*𝑸yA
23 22 exbidv x=zyx<𝑸y¬*𝑸yAyz<𝑸y¬*𝑸yA
24 20 23 1 elab2 zByz<𝑸y¬*𝑸yA
25 19 24 imbitrrdi x𝑸z<𝑸*𝑸x¬xAzB
26 25 expcomd x𝑸¬xAz<𝑸*𝑸xzB
27 26 imp x𝑸¬xAz<𝑸*𝑸xzB
28 27 eximdv x𝑸¬xAzz<𝑸*𝑸xzzB
29 7 28 mpd x𝑸¬xAzzB
30 n0 BzzB
31 29 30 sylibr x𝑸¬xAB
32 31 exlimiv xx𝑸¬xAB
33 2 3 32 3syl A𝑷B
34 0pss BB
35 33 34 sylibr A𝑷B
36 prn0 A𝑷A
37 elprnq A𝑷zAz𝑸
38 recrecnq z𝑸*𝑸*𝑸z=z
39 38 eleq1d z𝑸*𝑸*𝑸zAzA
40 39 anbi2d z𝑸A𝑷*𝑸*𝑸zAA𝑷zA
41 37 40 syl A𝑷zAA𝑷*𝑸*𝑸zAA𝑷zA
42 fvex *𝑸zV
43 fveq2 x=*𝑸z*𝑸x=*𝑸*𝑸z
44 43 eleq1d x=*𝑸z*𝑸xA*𝑸*𝑸zA
45 44 anbi2d x=*𝑸zA𝑷*𝑸xAA𝑷*𝑸*𝑸zA
46 42 45 spcev A𝑷*𝑸*𝑸zAxA𝑷*𝑸xA
47 41 46 syl6bir A𝑷zAA𝑷zAxA𝑷*𝑸xA
48 47 pm2.43i A𝑷zAxA𝑷*𝑸xA
49 elprnq A𝑷*𝑸xA*𝑸x𝑸
50 dmrecnq dom*𝑸=𝑸
51 0nnq ¬𝑸
52 50 51 ndmfvrcl *𝑸x𝑸x𝑸
53 49 52 syl A𝑷*𝑸xAx𝑸
54 ltrnq x<𝑸y*𝑸y<𝑸*𝑸x
55 prcdnq A𝑷*𝑸xA*𝑸y<𝑸*𝑸x*𝑸yA
56 54 55 biimtrid A𝑷*𝑸xAx<𝑸y*𝑸yA
57 56 alrimiv A𝑷*𝑸xAyx<𝑸y*𝑸yA
58 1 eqabri xByx<𝑸y¬*𝑸yA
59 exanali yx<𝑸y¬*𝑸yA¬yx<𝑸y*𝑸yA
60 58 59 bitri xB¬yx<𝑸y*𝑸yA
61 60 con2bii yx<𝑸y*𝑸yA¬xB
62 57 61 sylib A𝑷*𝑸xA¬xB
63 53 62 jca A𝑷*𝑸xAx𝑸¬xB
64 63 eximi xA𝑷*𝑸xAxx𝑸¬xB
65 48 64 syl A𝑷zAxx𝑸¬xB
66 65 ex A𝑷zAxx𝑸¬xB
67 66 exlimdv A𝑷zzAxx𝑸¬xB
68 n0 AzzA
69 nss ¬𝑸Bxx𝑸¬xB
70 67 68 69 3imtr4g A𝑷A¬𝑸B
71 36 70 mpd A𝑷¬𝑸B
72 ltrelnq <𝑸𝑸×𝑸
73 72 brel x<𝑸yx𝑸y𝑸
74 73 simpld x<𝑸yx𝑸
75 74 adantr x<𝑸y¬*𝑸yAx𝑸
76 75 exlimiv yx<𝑸y¬*𝑸yAx𝑸
77 58 76 sylbi xBx𝑸
78 77 ssriv B𝑸
79 71 78 jctil A𝑷B𝑸¬𝑸B
80 dfpss3 B𝑸B𝑸¬𝑸B
81 79 80 sylibr A𝑷B𝑸
82 35 81 jca A𝑷BB𝑸
83 ltsonq <𝑸Or𝑸
84 83 72 sotri z<𝑸xx<𝑸yz<𝑸y
85 84 ex z<𝑸xx<𝑸yz<𝑸y
86 85 anim1d z<𝑸xx<𝑸y¬*𝑸yAz<𝑸y¬*𝑸yA
87 86 eximdv z<𝑸xyx<𝑸y¬*𝑸yAyz<𝑸y¬*𝑸yA
88 87 58 24 3imtr4g z<𝑸xxBzB
89 88 com12 xBz<𝑸xzB
90 89 alrimiv xBzz<𝑸xzB
91 nfe1 yyx<𝑸y¬*𝑸yA
92 91 nfab _yx|yx<𝑸y¬*𝑸yA
93 1 92 nfcxfr _yB
94 nfv yx<𝑸z
95 93 94 nfrexw yzBx<𝑸z
96 19.8a z<𝑸y¬*𝑸yAyz<𝑸y¬*𝑸yA
97 96 24 sylibr z<𝑸y¬*𝑸yAzB
98 97 adantll x<𝑸zz<𝑸y¬*𝑸yAzB
99 simpll x<𝑸zz<𝑸y¬*𝑸yAx<𝑸z
100 98 99 jca x<𝑸zz<𝑸y¬*𝑸yAzBx<𝑸z
101 100 expcom ¬*𝑸yAx<𝑸zz<𝑸yzBx<𝑸z
102 101 eximdv ¬*𝑸yAzx<𝑸zz<𝑸yzzBx<𝑸z
103 ltbtwnnq x<𝑸yzx<𝑸zz<𝑸y
104 df-rex zBx<𝑸zzzBx<𝑸z
105 102 103 104 3imtr4g ¬*𝑸yAx<𝑸yzBx<𝑸z
106 105 impcom x<𝑸y¬*𝑸yAzBx<𝑸z
107 95 106 exlimi yx<𝑸y¬*𝑸yAzBx<𝑸z
108 58 107 sylbi xBzBx<𝑸z
109 90 108 jca xBzz<𝑸xzBzBx<𝑸z
110 109 rgen xBzz<𝑸xzBzBx<𝑸z
111 elnp B𝑷BB𝑸xBzz<𝑸xzBzBx<𝑸z
112 82 110 111 sylanblrc A𝑷B𝑷