Metamath Proof Explorer


Theorem dmrecnq

Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)

Ref Expression
Assertion dmrecnq dom*𝑸=𝑸

Proof

Step Hyp Ref Expression
1 df-rq *𝑸=𝑸-11𝑸
2 cnvimass 𝑸-11𝑸dom𝑸
3 1 2 eqsstri *𝑸dom𝑸
4 mulnqf 𝑸:𝑸×𝑸𝑸
5 4 fdmi dom𝑸=𝑸×𝑸
6 3 5 sseqtri *𝑸𝑸×𝑸
7 dmss *𝑸𝑸×𝑸dom*𝑸dom𝑸×𝑸
8 6 7 ax-mp dom*𝑸dom𝑸×𝑸
9 dmxpid dom𝑸×𝑸=𝑸
10 8 9 sseqtri dom*𝑸𝑸
11 recclnq x𝑸*𝑸x𝑸
12 opelxpi x𝑸*𝑸x𝑸x*𝑸x𝑸×𝑸
13 11 12 mpdan x𝑸x*𝑸x𝑸×𝑸
14 df-ov x𝑸*𝑸x=𝑸x*𝑸x
15 recidnq x𝑸x𝑸*𝑸x=1𝑸
16 14 15 eqtr3id x𝑸𝑸x*𝑸x=1𝑸
17 ffn 𝑸:𝑸×𝑸𝑸𝑸Fn𝑸×𝑸
18 fniniseg 𝑸Fn𝑸×𝑸x*𝑸x𝑸-11𝑸x*𝑸x𝑸×𝑸𝑸x*𝑸x=1𝑸
19 4 17 18 mp2b x*𝑸x𝑸-11𝑸x*𝑸x𝑸×𝑸𝑸x*𝑸x=1𝑸
20 13 16 19 sylanbrc x𝑸x*𝑸x𝑸-11𝑸
21 20 1 eleqtrrdi x𝑸x*𝑸x*𝑸
22 df-br x*𝑸*𝑸xx*𝑸x*𝑸
23 21 22 sylibr x𝑸x*𝑸*𝑸x
24 vex xV
25 fvex *𝑸xV
26 24 25 breldm x*𝑸*𝑸xxdom*𝑸
27 23 26 syl x𝑸xdom*𝑸
28 27 ssriv 𝑸dom*𝑸
29 10 28 eqssi dom*𝑸=𝑸