| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rq |
|- *Q = ( `' .Q " { 1Q } ) |
| 2 |
|
cnvimass |
|- ( `' .Q " { 1Q } ) C_ dom .Q |
| 3 |
1 2
|
eqsstri |
|- *Q C_ dom .Q |
| 4 |
|
mulnqf |
|- .Q : ( Q. X. Q. ) --> Q. |
| 5 |
4
|
fdmi |
|- dom .Q = ( Q. X. Q. ) |
| 6 |
3 5
|
sseqtri |
|- *Q C_ ( Q. X. Q. ) |
| 7 |
|
dmss |
|- ( *Q C_ ( Q. X. Q. ) -> dom *Q C_ dom ( Q. X. Q. ) ) |
| 8 |
6 7
|
ax-mp |
|- dom *Q C_ dom ( Q. X. Q. ) |
| 9 |
|
dmxpid |
|- dom ( Q. X. Q. ) = Q. |
| 10 |
8 9
|
sseqtri |
|- dom *Q C_ Q. |
| 11 |
|
recclnq |
|- ( x e. Q. -> ( *Q ` x ) e. Q. ) |
| 12 |
|
opelxpi |
|- ( ( x e. Q. /\ ( *Q ` x ) e. Q. ) -> <. x , ( *Q ` x ) >. e. ( Q. X. Q. ) ) |
| 13 |
11 12
|
mpdan |
|- ( x e. Q. -> <. x , ( *Q ` x ) >. e. ( Q. X. Q. ) ) |
| 14 |
|
df-ov |
|- ( x .Q ( *Q ` x ) ) = ( .Q ` <. x , ( *Q ` x ) >. ) |
| 15 |
|
recidnq |
|- ( x e. Q. -> ( x .Q ( *Q ` x ) ) = 1Q ) |
| 16 |
14 15
|
eqtr3id |
|- ( x e. Q. -> ( .Q ` <. x , ( *Q ` x ) >. ) = 1Q ) |
| 17 |
|
ffn |
|- ( .Q : ( Q. X. Q. ) --> Q. -> .Q Fn ( Q. X. Q. ) ) |
| 18 |
|
fniniseg |
|- ( .Q Fn ( Q. X. Q. ) -> ( <. x , ( *Q ` x ) >. e. ( `' .Q " { 1Q } ) <-> ( <. x , ( *Q ` x ) >. e. ( Q. X. Q. ) /\ ( .Q ` <. x , ( *Q ` x ) >. ) = 1Q ) ) ) |
| 19 |
4 17 18
|
mp2b |
|- ( <. x , ( *Q ` x ) >. e. ( `' .Q " { 1Q } ) <-> ( <. x , ( *Q ` x ) >. e. ( Q. X. Q. ) /\ ( .Q ` <. x , ( *Q ` x ) >. ) = 1Q ) ) |
| 20 |
13 16 19
|
sylanbrc |
|- ( x e. Q. -> <. x , ( *Q ` x ) >. e. ( `' .Q " { 1Q } ) ) |
| 21 |
20 1
|
eleqtrrdi |
|- ( x e. Q. -> <. x , ( *Q ` x ) >. e. *Q ) |
| 22 |
|
df-br |
|- ( x *Q ( *Q ` x ) <-> <. x , ( *Q ` x ) >. e. *Q ) |
| 23 |
21 22
|
sylibr |
|- ( x e. Q. -> x *Q ( *Q ` x ) ) |
| 24 |
|
vex |
|- x e. _V |
| 25 |
|
fvex |
|- ( *Q ` x ) e. _V |
| 26 |
24 25
|
breldm |
|- ( x *Q ( *Q ` x ) -> x e. dom *Q ) |
| 27 |
23 26
|
syl |
|- ( x e. Q. -> x e. dom *Q ) |
| 28 |
27
|
ssriv |
|- Q. C_ dom *Q |
| 29 |
10 28
|
eqssi |
|- dom *Q = Q. |