Metamath Proof Explorer


Theorem elab2

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995)

Ref Expression
Hypotheses elab2.1 AV
elab2.2 x=Aφψ
elab2.3 B=x|φ
Assertion elab2 ABψ

Proof

Step Hyp Ref Expression
1 elab2.1 AV
2 elab2.2 x=Aφψ
3 elab2.3 B=x|φ
4 2 3 elab2g AVABψ
5 1 4 ax-mp ABψ