| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reclempr.1 | ⊢ 𝐵  =  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) } | 
						
							| 2 |  | df-1p | ⊢ 1P  =  { 𝑤  ∣  𝑤  <Q  1Q } | 
						
							| 3 | 2 | eqabri | ⊢ ( 𝑤  ∈  1P  ↔  𝑤  <Q  1Q ) | 
						
							| 4 |  | ltrnq | ⊢ ( 𝑤  <Q  1Q  ↔  ( *Q ‘ 1Q )  <Q  ( *Q ‘ 𝑤 ) ) | 
						
							| 5 |  | mulcomnq | ⊢ ( ( *Q ‘ 1Q )  ·Q  1Q )  =  ( 1Q  ·Q  ( *Q ‘ 1Q ) ) | 
						
							| 6 |  | 1nq | ⊢ 1Q  ∈  Q | 
						
							| 7 |  | recclnq | ⊢ ( 1Q  ∈  Q  →  ( *Q ‘ 1Q )  ∈  Q ) | 
						
							| 8 |  | mulidnq | ⊢ ( ( *Q ‘ 1Q )  ∈  Q  →  ( ( *Q ‘ 1Q )  ·Q  1Q )  =  ( *Q ‘ 1Q ) ) | 
						
							| 9 | 6 7 8 | mp2b | ⊢ ( ( *Q ‘ 1Q )  ·Q  1Q )  =  ( *Q ‘ 1Q ) | 
						
							| 10 |  | recidnq | ⊢ ( 1Q  ∈  Q  →  ( 1Q  ·Q  ( *Q ‘ 1Q ) )  =  1Q ) | 
						
							| 11 | 6 10 | ax-mp | ⊢ ( 1Q  ·Q  ( *Q ‘ 1Q ) )  =  1Q | 
						
							| 12 | 5 9 11 | 3eqtr3i | ⊢ ( *Q ‘ 1Q )  =  1Q | 
						
							| 13 | 12 | breq1i | ⊢ ( ( *Q ‘ 1Q )  <Q  ( *Q ‘ 𝑤 )  ↔  1Q  <Q  ( *Q ‘ 𝑤 ) ) | 
						
							| 14 | 4 13 | bitri | ⊢ ( 𝑤  <Q  1Q  ↔  1Q  <Q  ( *Q ‘ 𝑤 ) ) | 
						
							| 15 |  | prlem936 | ⊢ ( ( 𝐴  ∈  P  ∧  1Q  <Q  ( *Q ‘ 𝑤 ) )  →  ∃ 𝑣  ∈  𝐴 ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) | 
						
							| 16 | 14 15 | sylan2b | ⊢ ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  →  ∃ 𝑣  ∈  𝐴 ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) | 
						
							| 17 |  | prnmax | ⊢ ( ( 𝐴  ∈  P  ∧  𝑣  ∈  𝐴 )  →  ∃ 𝑧  ∈  𝐴 𝑣  <Q  𝑧 ) | 
						
							| 18 | 17 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) )  →  ∃ 𝑧  ∈  𝐴 𝑣  <Q  𝑧 ) | 
						
							| 19 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑣  ∈  𝐴 )  →  𝑣  ∈  Q ) | 
						
							| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) )  →  𝑣  ∈  Q ) | 
						
							| 21 | 20 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  𝑣  ∈  Q ) | 
						
							| 22 |  | simp1r | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  𝑤  <Q  1Q ) | 
						
							| 23 |  | ltrelnq | ⊢  <Q   ⊆  ( Q  ×  Q ) | 
						
							| 24 | 23 | brel | ⊢ ( 𝑤  <Q  1Q  →  ( 𝑤  ∈  Q  ∧  1Q  ∈  Q ) ) | 
						
							| 25 | 24 | simpld | ⊢ ( 𝑤  <Q  1Q  →  𝑤  ∈  Q ) | 
						
							| 26 | 22 25 | syl | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  𝑤  ∈  Q ) | 
						
							| 27 |  | simp3 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  𝑣  <Q  𝑧 ) | 
						
							| 28 |  | simp2r | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) | 
						
							| 29 |  | ltrnq | ⊢ ( 𝑣  <Q  𝑧  ↔  ( *Q ‘ 𝑧 )  <Q  ( *Q ‘ 𝑣 ) ) | 
						
							| 30 |  | fvex | ⊢ ( *Q ‘ 𝑧 )  ∈  V | 
						
							| 31 |  | fvex | ⊢ ( *Q ‘ 𝑣 )  ∈  V | 
						
							| 32 |  | ltmnq | ⊢ ( 𝑢  ∈  Q  →  ( 𝑥  <Q  𝑦  ↔  ( 𝑢  ·Q  𝑥 )  <Q  ( 𝑢  ·Q  𝑦 ) ) ) | 
						
							| 33 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 34 |  | mulcomnq | ⊢ ( 𝑥  ·Q  𝑦 )  =  ( 𝑦  ·Q  𝑥 ) | 
						
							| 35 | 30 31 32 33 34 | caovord2 | ⊢ ( 𝑤  ∈  Q  →  ( ( *Q ‘ 𝑧 )  <Q  ( *Q ‘ 𝑣 )  ↔  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) ) ) | 
						
							| 36 | 29 35 | bitrid | ⊢ ( 𝑤  ∈  Q  →  ( 𝑣  <Q  𝑧  ↔  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( 𝑣  <Q  𝑧  ↔  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) ) ) | 
						
							| 38 | 37 | biimpd | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( 𝑣  <Q  𝑧  →  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) ) ) | 
						
							| 39 |  | mulcomnq | ⊢ ( 𝑣  ·Q  ( *Q ‘ 𝑣 ) )  =  ( ( *Q ‘ 𝑣 )  ·Q  𝑣 ) | 
						
							| 40 |  | recidnq | ⊢ ( 𝑣  ∈  Q  →  ( 𝑣  ·Q  ( *Q ‘ 𝑣 ) )  =  1Q ) | 
						
							| 41 | 39 40 | eqtr3id | ⊢ ( 𝑣  ∈  Q  →  ( ( *Q ‘ 𝑣 )  ·Q  𝑣 )  =  1Q ) | 
						
							| 42 |  | recidnq | ⊢ ( 𝑤  ∈  Q  →  ( 𝑤  ·Q  ( *Q ‘ 𝑤 ) )  =  1Q ) | 
						
							| 43 | 41 42 | oveqan12d | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ( ( *Q ‘ 𝑣 )  ·Q  𝑣 )  ·Q  ( 𝑤  ·Q  ( *Q ‘ 𝑤 ) ) )  =  ( 1Q  ·Q  1Q ) ) | 
						
							| 44 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 45 |  | mulassnq | ⊢ ( ( 𝑥  ·Q  𝑦 )  ·Q  𝑢 )  =  ( 𝑥  ·Q  ( 𝑦  ·Q  𝑢 ) ) | 
						
							| 46 |  | fvex | ⊢ ( *Q ‘ 𝑤 )  ∈  V | 
						
							| 47 | 31 44 33 34 45 46 | caov4 | ⊢ ( ( ( *Q ‘ 𝑣 )  ·Q  𝑣 )  ·Q  ( 𝑤  ·Q  ( *Q ‘ 𝑤 ) ) )  =  ( ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ·Q  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) ) ) | 
						
							| 48 |  | mulidnq | ⊢ ( 1Q  ∈  Q  →  ( 1Q  ·Q  1Q )  =  1Q ) | 
						
							| 49 | 6 48 | ax-mp | ⊢ ( 1Q  ·Q  1Q )  =  1Q | 
						
							| 50 | 43 47 49 | 3eqtr3g | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ·Q  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) ) )  =  1Q ) | 
						
							| 51 |  | recclnq | ⊢ ( 𝑣  ∈  Q  →  ( *Q ‘ 𝑣 )  ∈  Q ) | 
						
							| 52 |  | mulclnq | ⊢ ( ( ( *Q ‘ 𝑣 )  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ∈  Q ) | 
						
							| 53 | 51 52 | sylan | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ∈  Q ) | 
						
							| 54 |  | recmulnq | ⊢ ( ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ∈  Q  →  ( ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  =  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ↔  ( ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ·Q  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) ) )  =  1Q ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  =  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ↔  ( ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ·Q  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) ) )  =  1Q ) ) | 
						
							| 56 | 50 55 | mpbird | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  =  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) ) ) | 
						
							| 57 | 56 | eleq1d | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴  ↔  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) ) | 
						
							| 58 | 57 | notbid | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ¬  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴  ↔  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) ) | 
						
							| 59 | 58 | biimprd | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴  →  ¬  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴 ) ) | 
						
							| 60 | 38 59 | anim12d | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ( 𝑣  <Q  𝑧  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  →  ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ∧  ¬  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴 ) ) ) | 
						
							| 61 |  | ovex | ⊢ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ∈  V | 
						
							| 62 |  | breq2 | ⊢ ( 𝑦  =  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  →  ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  𝑦  ↔  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑦  =  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  →  ( *Q ‘ 𝑦 )  =  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) ) ) | 
						
							| 64 | 63 | eleq1d | ⊢ ( 𝑦  =  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  →  ( ( *Q ‘ 𝑦 )  ∈  𝐴  ↔  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴 ) ) | 
						
							| 65 | 64 | notbid | ⊢ ( 𝑦  =  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  →  ( ¬  ( *Q ‘ 𝑦 )  ∈  𝐴  ↔  ¬  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴 ) ) | 
						
							| 66 | 62 65 | anbi12d | ⊢ ( 𝑦  =  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  →  ( ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  ↔  ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ∧  ¬  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴 ) ) ) | 
						
							| 67 | 61 66 | spcev | ⊢ ( ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ∧  ¬  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴 )  →  ∃ 𝑦 ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) ) | 
						
							| 68 |  | ovex | ⊢ ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  ∈  V | 
						
							| 69 |  | breq1 | ⊢ ( 𝑥  =  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  →  ( 𝑥  <Q  𝑦  ↔  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  𝑦 ) ) | 
						
							| 70 | 69 | anbi1d | ⊢ ( 𝑥  =  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  →  ( ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  ↔  ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) ) ) | 
						
							| 71 | 70 | exbidv | ⊢ ( 𝑥  =  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  →  ( ∃ 𝑦 ( 𝑥  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  ↔  ∃ 𝑦 ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) ) ) | 
						
							| 72 | 68 71 1 | elab2 | ⊢ ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  ∈  𝐵  ↔  ∃ 𝑦 ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) ) | 
						
							| 73 | 67 72 | sylibr | ⊢ ( ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  <Q  ( ( *Q ‘ 𝑣 )  ·Q  𝑤 )  ∧  ¬  ( *Q ‘ ( ( *Q ‘ 𝑣 )  ·Q  𝑤 ) )  ∈  𝐴 )  →  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  ∈  𝐵 ) | 
						
							| 74 | 60 73 | syl6 | ⊢ ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  →  ( ( 𝑣  <Q  𝑧  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  →  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  ∈  𝐵 ) ) | 
						
							| 75 | 74 | imp | ⊢ ( ( ( 𝑣  ∈  Q  ∧  𝑤  ∈  Q )  ∧  ( 𝑣  <Q  𝑧  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) )  →  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  ∈  𝐵 ) | 
						
							| 76 | 21 26 27 28 75 | syl22anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  ∈  𝐵 ) | 
						
							| 77 | 23 | brel | ⊢ ( 𝑣  <Q  𝑧  →  ( 𝑣  ∈  Q  ∧  𝑧  ∈  Q ) ) | 
						
							| 78 | 77 | simprd | ⊢ ( 𝑣  <Q  𝑧  →  𝑧  ∈  Q ) | 
						
							| 79 | 78 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  𝑧  ∈  Q ) | 
						
							| 80 |  | mulidnq | ⊢ ( 𝑤  ∈  Q  →  ( 𝑤  ·Q  1Q )  =  𝑤 ) | 
						
							| 81 |  | mulcomnq | ⊢ ( 𝑤  ·Q  1Q )  =  ( 1Q  ·Q  𝑤 ) | 
						
							| 82 | 80 81 | eqtr3di | ⊢ ( 𝑤  ∈  Q  →  𝑤  =  ( 1Q  ·Q  𝑤 ) ) | 
						
							| 83 |  | recidnq | ⊢ ( 𝑧  ∈  Q  →  ( 𝑧  ·Q  ( *Q ‘ 𝑧 ) )  =  1Q ) | 
						
							| 84 | 83 | oveq1d | ⊢ ( 𝑧  ∈  Q  →  ( ( 𝑧  ·Q  ( *Q ‘ 𝑧 ) )  ·Q  𝑤 )  =  ( 1Q  ·Q  𝑤 ) ) | 
						
							| 85 |  | mulassnq | ⊢ ( ( 𝑧  ·Q  ( *Q ‘ 𝑧 ) )  ·Q  𝑤 )  =  ( 𝑧  ·Q  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 ) ) | 
						
							| 86 | 84 85 | eqtr3di | ⊢ ( 𝑧  ∈  Q  →  ( 1Q  ·Q  𝑤 )  =  ( 𝑧  ·Q  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 ) ) ) | 
						
							| 87 | 82 86 | sylan9eqr | ⊢ ( ( 𝑧  ∈  Q  ∧  𝑤  ∈  Q )  →  𝑤  =  ( 𝑧  ·Q  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 ) ) ) | 
						
							| 88 | 79 26 87 | syl2anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  𝑤  =  ( 𝑧  ·Q  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 ) ) ) | 
						
							| 89 |  | oveq2 | ⊢ ( 𝑥  =  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  →  ( 𝑧  ·Q  𝑥 )  =  ( 𝑧  ·Q  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 ) ) ) | 
						
							| 90 | 89 | rspceeqv | ⊢ ( ( ( ( *Q ‘ 𝑧 )  ·Q  𝑤 )  ∈  𝐵  ∧  𝑤  =  ( 𝑧  ·Q  ( ( *Q ‘ 𝑧 )  ·Q  𝑤 ) ) )  →  ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) | 
						
							| 91 | 76 88 90 | syl2anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 )  ∧  𝑣  <Q  𝑧 )  →  ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) | 
						
							| 92 | 91 | 3expia | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) )  →  ( 𝑣  <Q  𝑧  →  ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) ) | 
						
							| 93 | 92 | reximdv | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) )  →  ( ∃ 𝑧  ∈  𝐴 𝑣  <Q  𝑧  →  ∃ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) ) | 
						
							| 94 | 1 | reclem2pr | ⊢ ( 𝐴  ∈  P  →  𝐵  ∈  P ) | 
						
							| 95 |  | df-mp | ⊢  ·P   =  ( 𝑦  ∈  P ,  𝑤  ∈  P  ↦  { 𝑢  ∣  ∃ 𝑓  ∈  𝑦 ∃ 𝑔  ∈  𝑤 𝑢  =  ( 𝑓  ·Q  𝑔 ) } ) | 
						
							| 96 |  | mulclnq | ⊢ ( ( 𝑓  ∈  Q  ∧  𝑔  ∈  Q )  →  ( 𝑓  ·Q  𝑔 )  ∈  Q ) | 
						
							| 97 | 95 96 | genpelv | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( 𝑤  ∈  ( 𝐴  ·P  𝐵 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) ) | 
						
							| 98 | 94 97 | mpdan | ⊢ ( 𝐴  ∈  P  →  ( 𝑤  ∈  ( 𝐴  ·P  𝐵 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) ) | 
						
							| 99 | 98 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) )  →  ( 𝑤  ∈  ( 𝐴  ·P  𝐵 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐵 𝑤  =  ( 𝑧  ·Q  𝑥 ) ) ) | 
						
							| 100 | 93 99 | sylibrd | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) )  →  ( ∃ 𝑧  ∈  𝐴 𝑣  <Q  𝑧  →  𝑤  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 101 | 18 100 | mpd | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  ∧  ( 𝑣  ∈  𝐴  ∧  ¬  ( 𝑣  ·Q  ( *Q ‘ 𝑤 ) )  ∈  𝐴 ) )  →  𝑤  ∈  ( 𝐴  ·P  𝐵 ) ) | 
						
							| 102 | 16 101 | rexlimddv | ⊢ ( ( 𝐴  ∈  P  ∧  𝑤  <Q  1Q )  →  𝑤  ∈  ( 𝐴  ·P  𝐵 ) ) | 
						
							| 103 | 102 | ex | ⊢ ( 𝐴  ∈  P  →  ( 𝑤  <Q  1Q  →  𝑤  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 104 | 3 103 | biimtrid | ⊢ ( 𝐴  ∈  P  →  ( 𝑤  ∈  1P  →  𝑤  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 105 | 104 | ssrdv | ⊢ ( 𝐴  ∈  P  →  1P  ⊆  ( 𝐴  ·P  𝐵 ) ) |