Metamath Proof Explorer


Theorem simp1r

Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011)

Ref Expression
Assertion simp1r ( ( ( 𝜑𝜓 ) ∧ 𝜒𝜃 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝜑𝜓 ) → 𝜓 )
2 1 3ad2ant1 ( ( ( 𝜑𝜓 ) ∧ 𝜒𝜃 ) → 𝜓 )