Metamath Proof Explorer


Theorem simp1r

Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011)

Ref Expression
Assertion simp1r
|- ( ( ( ph /\ ps ) /\ ch /\ th ) -> ps )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ph /\ ps ) -> ps )
2 1 3ad2ant1
 |-  ( ( ( ph /\ ps ) /\ ch /\ th ) -> ps )