Metamath Proof Explorer


Theorem simp2l

Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011)

Ref Expression
Assertion simp2l
|- ( ( ph /\ ( ps /\ ch ) /\ th ) -> ps )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ps /\ ch ) -> ps )
2 1 3ad2ant2
 |-  ( ( ph /\ ( ps /\ ch ) /\ th ) -> ps )