Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
2 |
1
|
brel |
⊢ ( 1Q <Q 𝐵 → ( 1Q ∈ Q ∧ 𝐵 ∈ Q ) ) |
3 |
2
|
simprd |
⊢ ( 1Q <Q 𝐵 → 𝐵 ∈ Q ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → 𝐵 ∈ Q ) |
5 |
|
breq2 |
⊢ ( 𝑏 = 𝐵 → ( 1Q <Q 𝑏 ↔ 1Q <Q 𝐵 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ↔ ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑥 ·Q 𝑏 ) = ( 𝑥 ·Q 𝐵 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) |
9 |
8
|
notbid |
⊢ ( 𝑏 = 𝐵 → ( ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) |
11 |
6 10
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ↔ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) ) |
12 |
|
prn0 |
⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) |
13 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) |
14 |
12 13
|
sylib |
⊢ ( 𝐴 ∈ P → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
16 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ Q ) |
17 |
16
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑦 ∈ Q ) |
18 |
|
mulidnq |
⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q 1Q ) = 𝑦 ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 1Q ) = 𝑦 ) |
20 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 1Q <Q 𝑏 ) |
21 |
|
ltmnq |
⊢ ( 𝑦 ∈ Q → ( 1Q <Q 𝑏 ↔ ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) ) ) |
22 |
21
|
biimpa |
⊢ ( ( 𝑦 ∈ Q ∧ 1Q <Q 𝑏 ) → ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) ) |
23 |
17 20 22
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 1Q ) <Q ( 𝑦 ·Q 𝑏 ) ) |
24 |
19 23
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑦 <Q ( 𝑦 ·Q 𝑏 ) ) |
25 |
1
|
brel |
⊢ ( 1Q <Q 𝑏 → ( 1Q ∈ Q ∧ 𝑏 ∈ Q ) ) |
26 |
25
|
simprd |
⊢ ( 1Q <Q 𝑏 → 𝑏 ∈ Q ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → 𝑏 ∈ Q ) |
28 |
|
mulclnq |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑏 ∈ Q ) → ( 𝑦 ·Q 𝑏 ) ∈ Q ) |
29 |
17 27 28
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 𝑏 ) ∈ Q ) |
30 |
|
ltexnq |
⊢ ( ( 𝑦 ·Q 𝑏 ) ∈ Q → ( 𝑦 <Q ( 𝑦 ·Q 𝑏 ) ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 <Q ( 𝑦 ·Q 𝑏 ) ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) |
32 |
24 31
|
mpbid |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) |
33 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → 𝐴 ∈ P ) |
34 |
|
vex |
⊢ 𝑧 ∈ V |
35 |
34
|
prlem934 |
⊢ ( 𝐴 ∈ P → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) |
36 |
33 35
|
syl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) |
37 |
33
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ P ) |
38 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) |
39 |
|
eleq1 |
⊢ ( ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) → ( ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ↔ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) |
40 |
39
|
biimparc |
⊢ ( ( ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) |
41 |
38 40
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) |
42 |
41
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) |
43 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Q ) |
44 |
33 43
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Q ) |
45 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) → ( 𝑦 +Q 𝑧 ) ∈ Q ) |
46 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
47 |
46
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
48 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
49 |
47 48
|
ndmovrcl |
⊢ ( ( 𝑦 +Q 𝑧 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) ) |
50 |
49
|
simprd |
⊢ ( ( 𝑦 +Q 𝑧 ) ∈ Q → 𝑧 ∈ Q ) |
51 |
45 50
|
syl |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) → 𝑧 ∈ Q ) |
52 |
33 41 51
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → 𝑧 ∈ Q ) |
53 |
52
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ Q ) |
54 |
|
addclnq |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑥 +Q 𝑧 ) ∈ Q ) |
55 |
44 53 54
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 +Q 𝑧 ) ∈ Q ) |
56 |
|
prub |
⊢ ( ( ( 𝐴 ∈ P ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐴 ) ∧ ( 𝑥 +Q 𝑧 ) ∈ Q ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) ) |
57 |
37 42 55 56
|
syl21anc |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) ) |
58 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑏 ∈ Q ) |
59 |
|
mulclnq |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑏 ∈ Q ) → ( 𝑥 ·Q 𝑏 ) ∈ Q ) |
60 |
44 58 59
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ·Q 𝑏 ) ∈ Q ) |
61 |
17
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ Q ) |
62 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) |
63 |
|
recclnq |
⊢ ( 𝑦 ∈ Q → ( *Q ‘ 𝑦 ) ∈ Q ) |
64 |
|
mulclnq |
⊢ ( ( 𝑧 ∈ Q ∧ ( *Q ‘ 𝑦 ) ∈ Q ) → ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) |
65 |
63 64
|
sylan2 |
⊢ ( ( 𝑧 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) |
66 |
65
|
ancoms |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) |
67 |
|
ltmnq |
⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ∈ Q → ( 𝑦 <Q 𝑥 ↔ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
68 |
66 67
|
syl |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 <Q 𝑥 ↔ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
69 |
|
mulassnq |
⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) ) |
70 |
|
mulcomnq |
⊢ ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) = ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) |
71 |
70
|
oveq2i |
⊢ ( 𝑧 ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) ) = ( 𝑧 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
72 |
69 71
|
eqtri |
⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( 𝑧 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
73 |
|
recidnq |
⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) = 1Q ) |
74 |
73
|
oveq2d |
⊢ ( 𝑦 ∈ Q → ( 𝑧 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑧 ·Q 1Q ) ) |
75 |
|
mulidnq |
⊢ ( 𝑧 ∈ Q → ( 𝑧 ·Q 1Q ) = 𝑧 ) |
76 |
74 75
|
sylan9eq |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑧 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = 𝑧 ) |
77 |
72 76
|
eqtrid |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = 𝑧 ) |
78 |
77
|
breq1d |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
79 |
68 78
|
bitrd |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 <Q 𝑥 ↔ 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
80 |
79
|
adantll |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑧 ∈ Q ) → ( 𝑦 <Q 𝑥 ↔ 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
81 |
|
mulnqf |
⊢ ·Q : ( Q × Q ) ⟶ Q |
82 |
81
|
fdmi |
⊢ dom ·Q = ( Q × Q ) |
83 |
82 48
|
ndmovrcl |
⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑥 ∈ Q ∧ 𝑏 ∈ Q ) ) |
84 |
83
|
simpld |
⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → 𝑥 ∈ Q ) |
85 |
|
ltanq |
⊢ ( 𝑥 ∈ Q → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) ) |
86 |
84 85
|
syl |
⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) ) |
87 |
86
|
adantr |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) ) |
88 |
|
vex |
⊢ 𝑦 ∈ V |
89 |
|
ovex |
⊢ ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ∈ V |
90 |
|
mulcomnq |
⊢ ( 𝑢 ·Q 𝑤 ) = ( 𝑤 ·Q 𝑢 ) |
91 |
|
distrnq |
⊢ ( 𝑢 ·Q ( 𝑤 +Q 𝑣 ) ) = ( ( 𝑢 ·Q 𝑤 ) +Q ( 𝑢 ·Q 𝑣 ) ) |
92 |
88 34 89 90 91
|
caovdir |
⊢ ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑦 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) +Q ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) |
93 |
|
vex |
⊢ 𝑥 ∈ V |
94 |
|
fvex |
⊢ ( *Q ‘ 𝑦 ) ∈ V |
95 |
|
mulassnq |
⊢ ( ( 𝑢 ·Q 𝑤 ) ·Q 𝑣 ) = ( 𝑢 ·Q ( 𝑤 ·Q 𝑣 ) ) |
96 |
88 93 94 90 95
|
caov12 |
⊢ ( 𝑦 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
97 |
73
|
oveq2d |
⊢ ( 𝑦 ∈ Q → ( 𝑥 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q 1Q ) ) |
98 |
|
mulidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) |
99 |
84 98
|
syl |
⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) |
100 |
97 99
|
sylan9eqr |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = 𝑥 ) |
101 |
96 100
|
eqtrid |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑦 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = 𝑥 ) |
102 |
|
mulcomnq |
⊢ ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) = ( ( *Q ‘ 𝑦 ) ·Q 𝑥 ) |
103 |
102
|
oveq2i |
⊢ ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑥 ) ) |
104 |
|
mulassnq |
⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑥 ) ) |
105 |
103 104
|
eqtr4i |
⊢ ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) |
106 |
105
|
a1i |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) |
107 |
101 106
|
oveq12d |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑦 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) +Q ( 𝑧 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) = ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
108 |
92 107
|
eqtrid |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) |
109 |
108
|
breq2d |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 +Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ) ) ) |
110 |
87 109
|
bitr4d |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) ) |
111 |
110
|
adantr |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑧 ∈ Q ) → ( 𝑧 <Q ( ( 𝑧 ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) ) |
112 |
80 111
|
bitrd |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑧 ∈ Q ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) ) |
113 |
112
|
adantrr |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑧 ∈ Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) ) |
114 |
|
ltanq |
⊢ ( 𝑧 ∈ Q → ( 𝑦 <Q 𝑥 ↔ ( 𝑧 +Q 𝑦 ) <Q ( 𝑧 +Q 𝑥 ) ) ) |
115 |
|
addcomnq |
⊢ ( 𝑧 +Q 𝑦 ) = ( 𝑦 +Q 𝑧 ) |
116 |
|
addcomnq |
⊢ ( 𝑧 +Q 𝑥 ) = ( 𝑥 +Q 𝑧 ) |
117 |
115 116
|
breq12i |
⊢ ( ( 𝑧 +Q 𝑦 ) <Q ( 𝑧 +Q 𝑥 ) ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) |
118 |
114 117
|
bitrdi |
⊢ ( 𝑧 ∈ Q → ( 𝑦 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) ) |
119 |
118
|
ad2antrl |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑧 ∈ Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( 𝑦 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ) ) |
120 |
|
oveq1 |
⊢ ( ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ) |
121 |
|
vex |
⊢ 𝑏 ∈ V |
122 |
88 121 93 90 95 94
|
caov411 |
⊢ ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
123 |
73
|
oveq2d |
⊢ ( 𝑦 ∈ Q → ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( 𝑥 ·Q 𝑏 ) ·Q 1Q ) ) |
124 |
|
mulidnq |
⊢ ( ( 𝑥 ·Q 𝑏 ) ∈ Q → ( ( 𝑥 ·Q 𝑏 ) ·Q 1Q ) = ( 𝑥 ·Q 𝑏 ) ) |
125 |
123 124
|
sylan9eqr |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑥 ·Q 𝑏 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) ) |
126 |
122 125
|
eqtrid |
⊢ ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑦 ·Q 𝑏 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) ) |
127 |
120 126
|
sylan9eqr |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) = ( 𝑥 ·Q 𝑏 ) ) |
128 |
127
|
breq2d |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
129 |
128
|
adantrl |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑧 ∈ Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( ( 𝑥 +Q 𝑧 ) <Q ( ( 𝑦 +Q 𝑧 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑦 ) ) ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
130 |
113 119 129
|
3bitr3d |
⊢ ( ( ( ( 𝑥 ·Q 𝑏 ) ∈ Q ∧ 𝑦 ∈ Q ) ∧ ( 𝑧 ∈ Q ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ) → ( ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
131 |
60 61 53 62 130
|
syl22anc |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 +Q 𝑧 ) <Q ( 𝑥 +Q 𝑧 ) ↔ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
132 |
57 131
|
sylibd |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) ) |
133 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) ) |
134 |
133
|
impancom |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 → ( 𝑥 +Q 𝑧 ) ∈ 𝐴 ) ) |
135 |
134
|
con3d |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
136 |
135
|
ex |
⊢ ( 𝐴 ∈ P → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) ) |
137 |
136
|
com23 |
⊢ ( 𝐴 ∈ P → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) ) |
138 |
37 137
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ( ( 𝑥 +Q 𝑧 ) <Q ( 𝑥 ·Q 𝑏 ) → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) ) |
139 |
132 138
|
mpdd |
⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
140 |
139
|
reximdva |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ( ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 +Q 𝑧 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
141 |
36 140
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) ∧ ( 𝑦 +Q 𝑧 ) = ( 𝑦 ·Q 𝑏 ) ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
142 |
32 141
|
exlimddv |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
143 |
142
|
expr |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
144 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ·Q 𝑏 ) = ( 𝑦 ·Q 𝑏 ) ) |
145 |
144
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) |
146 |
145
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ↔ ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) ) |
147 |
146
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
148 |
147
|
ex |
⊢ ( 𝑦 ∈ 𝐴 → ( ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
149 |
148
|
adantl |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ ( 𝑦 ·Q 𝑏 ) ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) ) |
150 |
143 149
|
pm2.61d |
⊢ ( ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
151 |
15 150
|
exlimddv |
⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝑏 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝑏 ) ∈ 𝐴 ) |
152 |
11 151
|
vtoclg |
⊢ ( 𝐵 ∈ Q → ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) ) |
153 |
4 152
|
mpcom |
⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ·Q 𝐵 ) ∈ 𝐴 ) |