Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ad2ant2.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
Assertion | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ) → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
2 | 1 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜏 ) ) → 𝜒 ) |
3 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ) → 𝜒 ) |