Metamath Proof Explorer


Theorem eqbrtrrd

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999)

Ref Expression
Hypotheses eqbrtrrd.1 ( 𝜑𝐴 = 𝐵 )
eqbrtrrd.2 ( 𝜑𝐴 𝑅 𝐶 )
Assertion eqbrtrrd ( 𝜑𝐵 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 eqbrtrrd.1 ( 𝜑𝐴 = 𝐵 )
2 eqbrtrrd.2 ( 𝜑𝐴 𝑅 𝐶 )
3 1 eqcomd ( 𝜑𝐵 = 𝐴 )
4 3 2 eqbrtrd ( 𝜑𝐵 𝑅 𝐶 )