Metamath Proof Explorer


Theorem eqbrtrrd

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999)

Ref Expression
Hypotheses eqbrtrrd.1
|- ( ph -> A = B )
eqbrtrrd.2
|- ( ph -> A R C )
Assertion eqbrtrrd
|- ( ph -> B R C )

Proof

Step Hyp Ref Expression
1 eqbrtrrd.1
 |-  ( ph -> A = B )
2 eqbrtrrd.2
 |-  ( ph -> A R C )
3 1 eqcomd
 |-  ( ph -> B = A )
4 3 2 eqbrtrd
 |-  ( ph -> B R C )