Description: Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqbrtrd.1 | |- ( ph -> A = B ) |
|
eqbrtrd.2 | |- ( ph -> B R C ) |
||
Assertion | eqbrtrd | |- ( ph -> A R C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrd.1 | |- ( ph -> A = B ) |
|
2 | eqbrtrd.2 | |- ( ph -> B R C ) |
|
3 | 1 | breq1d | |- ( ph -> ( A R C <-> B R C ) ) |
4 | 2 3 | mpbird | |- ( ph -> A R C ) |