Metamath Proof Explorer


Theorem eqbrtrd

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999)

Ref Expression
Hypotheses eqbrtrd.1
|- ( ph -> A = B )
eqbrtrd.2
|- ( ph -> B R C )
Assertion eqbrtrd
|- ( ph -> A R C )

Proof

Step Hyp Ref Expression
1 eqbrtrd.1
 |-  ( ph -> A = B )
2 eqbrtrd.2
 |-  ( ph -> B R C )
3 1 breq1d
 |-  ( ph -> ( A R C <-> B R C ) )
4 2 3 mpbird
 |-  ( ph -> A R C )