Metamath Proof Explorer
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999)
|
|
Ref |
Expression |
|
Hypotheses |
eqbrtrd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
eqbrtrd.2 |
⊢ ( 𝜑 → 𝐵 𝑅 𝐶 ) |
|
Assertion |
eqbrtrd |
⊢ ( 𝜑 → 𝐴 𝑅 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqbrtrd.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
eqbrtrd.2 |
⊢ ( 𝜑 → 𝐵 𝑅 𝐶 ) |
3 |
1
|
breq1d |
⊢ ( 𝜑 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) |
4 |
2 3
|
mpbird |
⊢ ( 𝜑 → 𝐴 𝑅 𝐶 ) |