Metamath Proof Explorer


Theorem breqtri

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses breqtr.1 𝐴 𝑅 𝐵
breqtr.2 𝐵 = 𝐶
Assertion breqtri 𝐴 𝑅 𝐶

Proof

Step Hyp Ref Expression
1 breqtr.1 𝐴 𝑅 𝐵
2 breqtr.2 𝐵 = 𝐶
3 2 breq2i ( 𝐴 𝑅 𝐵𝐴 𝑅 𝐶 )
4 1 3 mpbi 𝐴 𝑅 𝐶