Metamath Proof Explorer


Theorem reximdva

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis reximdva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion reximdva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reximdva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 ex ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
3 2 reximdvai ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )