Metamath Proof Explorer


Theorem reximdva

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis reximdva.1
|- ( ( ph /\ x e. A ) -> ( ps -> ch ) )
Assertion reximdva
|- ( ph -> ( E. x e. A ps -> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 reximdva.1
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
2 1 ex
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
3 2 reximdvai
 |-  ( ph -> ( E. x e. A ps -> E. x e. A ch ) )