Metamath Proof Explorer


Theorem rexlimddv

Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypotheses rexlimddv.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
rexlimddv.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝜒 )
Assertion rexlimddv ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 rexlimddv.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
2 rexlimddv.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝜒 )
3 2 rexlimdvaa ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )
4 1 3 mpd ( 𝜑𝜒 )