Metamath Proof Explorer
		
		
		
		Description:  Restricted existential elimination rule of natural deduction.
       (Contributed by Mario Carneiro, 15-Jun-2016)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						rexlimddv.1 | 
						⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 𝜓 )  | 
					
					
						 | 
						 | 
						rexlimddv.2 | 
						⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  →  𝜒 )  | 
					
				
					 | 
					Assertion | 
					rexlimddv | 
					⊢  ( 𝜑  →  𝜒 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rexlimddv.1 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 𝜓 )  | 
						
						
							| 2 | 
							
								
							 | 
							rexlimddv.2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  →  𝜒 )  | 
						
						
							| 3 | 
							
								2
							 | 
							rexlimdvaa | 
							⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  →  𝜒 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							mpd | 
							⊢ ( 𝜑  →  𝜒 )  |