Metamath Proof Explorer


Theorem rexlimddv

Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypotheses rexlimddv.1 φxAψ
rexlimddv.2 φxAψχ
Assertion rexlimddv φχ

Proof

Step Hyp Ref Expression
1 rexlimddv.1 φxAψ
2 rexlimddv.2 φxAψχ
3 2 rexlimdvaa φxAψχ
4 1 3 mpd φχ