Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexlimddv.1 | |- ( ph -> E. x e. A ps ) |
|
rexlimddv.2 | |- ( ( ph /\ ( x e. A /\ ps ) ) -> ch ) |
||
Assertion | rexlimddv | |- ( ph -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddv.1 | |- ( ph -> E. x e. A ps ) |
|
2 | rexlimddv.2 | |- ( ( ph /\ ( x e. A /\ ps ) ) -> ch ) |
|
3 | 2 | rexlimdvaa | |- ( ph -> ( E. x e. A ps -> ch ) ) |
4 | 1 3 | mpd | |- ( ph -> ch ) |