Metamath Proof Explorer


Theorem rexlimddv

Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypotheses rexlimddv.1
|- ( ph -> E. x e. A ps )
rexlimddv.2
|- ( ( ph /\ ( x e. A /\ ps ) ) -> ch )
Assertion rexlimddv
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 rexlimddv.1
 |-  ( ph -> E. x e. A ps )
2 rexlimddv.2
 |-  ( ( ph /\ ( x e. A /\ ps ) ) -> ch )
3 2 rexlimdvaa
 |-  ( ph -> ( E. x e. A ps -> ch ) )
4 1 3 mpd
 |-  ( ph -> ch )