Metamath Proof Explorer


Theorem reximdv

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998)

Ref Expression
Hypothesis reximdv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion reximdv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reximdv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 a1d ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
3 2 reximdvai ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )