Metamath Proof Explorer
Description: Deduction from Theorem 19.22 of Margaris p. 90. (Restricted
quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998)
|
|
Ref |
Expression |
|
Hypothesis |
reximdv.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
Assertion |
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reximdv.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
1
|
a1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) |
3 |
2
|
reximdvai |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |