| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reclempr.1 |  |-  B = { x | E. y ( x  | 
						
							| 2 |  | df-1p |  |-  1P = { w | w  | 
						
							| 3 | 2 | eqabri |  |-  ( w e. 1P <-> w  | 
						
							| 4 |  | ltrnq |  |-  ( w  ( *Q ` 1Q )  | 
						
							| 5 |  | mulcomnq |  |-  ( ( *Q ` 1Q ) .Q 1Q ) = ( 1Q .Q ( *Q ` 1Q ) ) | 
						
							| 6 |  | 1nq |  |-  1Q e. Q. | 
						
							| 7 |  | recclnq |  |-  ( 1Q e. Q. -> ( *Q ` 1Q ) e. Q. ) | 
						
							| 8 |  | mulidnq |  |-  ( ( *Q ` 1Q ) e. Q. -> ( ( *Q ` 1Q ) .Q 1Q ) = ( *Q ` 1Q ) ) | 
						
							| 9 | 6 7 8 | mp2b |  |-  ( ( *Q ` 1Q ) .Q 1Q ) = ( *Q ` 1Q ) | 
						
							| 10 |  | recidnq |  |-  ( 1Q e. Q. -> ( 1Q .Q ( *Q ` 1Q ) ) = 1Q ) | 
						
							| 11 | 6 10 | ax-mp |  |-  ( 1Q .Q ( *Q ` 1Q ) ) = 1Q | 
						
							| 12 | 5 9 11 | 3eqtr3i |  |-  ( *Q ` 1Q ) = 1Q | 
						
							| 13 | 12 | breq1i |  |-  ( ( *Q ` 1Q )  1Q  | 
						
							| 14 | 4 13 | bitri |  |-  ( w  1Q  | 
						
							| 15 |  | prlem936 |  |-  ( ( A e. P. /\ 1Q  E. v e. A -. ( v .Q ( *Q ` w ) ) e. A ) | 
						
							| 16 | 14 15 | sylan2b |  |-  ( ( A e. P. /\ w  E. v e. A -. ( v .Q ( *Q ` w ) ) e. A ) | 
						
							| 17 |  | prnmax |  |-  ( ( A e. P. /\ v e. A ) -> E. z e. A v  | 
						
							| 18 | 17 | ad2ant2r |  |-  ( ( ( A e. P. /\ w  E. z e. A v  | 
						
							| 19 |  | elprnq |  |-  ( ( A e. P. /\ v e. A ) -> v e. Q. ) | 
						
							| 20 | 19 | ad2ant2r |  |-  ( ( ( A e. P. /\ w  v e. Q. ) | 
						
							| 21 | 20 | 3adant3 |  |-  ( ( ( A e. P. /\ w  v e. Q. ) | 
						
							| 22 |  | simp1r |  |-  ( ( ( A e. P. /\ w  w  | 
						
							| 23 |  | ltrelnq |  |-   | 
						
							| 24 | 23 | brel |  |-  ( w  ( w e. Q. /\ 1Q e. Q. ) ) | 
						
							| 25 | 24 | simpld |  |-  ( w  w e. Q. ) | 
						
							| 26 | 22 25 | syl |  |-  ( ( ( A e. P. /\ w  w e. Q. ) | 
						
							| 27 |  | simp3 |  |-  ( ( ( A e. P. /\ w  v  | 
						
							| 28 |  | simp2r |  |-  ( ( ( A e. P. /\ w  -. ( v .Q ( *Q ` w ) ) e. A ) | 
						
							| 29 |  | ltrnq |  |-  ( v  ( *Q ` z )  | 
						
							| 30 |  | fvex |  |-  ( *Q ` z ) e. _V | 
						
							| 31 |  | fvex |  |-  ( *Q ` v ) e. _V | 
						
							| 32 |  | ltmnq |  |-  ( u e. Q. -> ( x  ( u .Q x )  | 
						
							| 33 |  | vex |  |-  w e. _V | 
						
							| 34 |  | mulcomnq |  |-  ( x .Q y ) = ( y .Q x ) | 
						
							| 35 | 30 31 32 33 34 | caovord2 |  |-  ( w e. Q. -> ( ( *Q ` z )  ( ( *Q ` z ) .Q w )  | 
						
							| 36 | 29 35 | bitrid |  |-  ( w e. Q. -> ( v  ( ( *Q ` z ) .Q w )  | 
						
							| 37 | 36 | adantl |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( v  ( ( *Q ` z ) .Q w )  | 
						
							| 38 | 37 | biimpd |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( v  ( ( *Q ` z ) .Q w )  | 
						
							| 39 |  | mulcomnq |  |-  ( v .Q ( *Q ` v ) ) = ( ( *Q ` v ) .Q v ) | 
						
							| 40 |  | recidnq |  |-  ( v e. Q. -> ( v .Q ( *Q ` v ) ) = 1Q ) | 
						
							| 41 | 39 40 | eqtr3id |  |-  ( v e. Q. -> ( ( *Q ` v ) .Q v ) = 1Q ) | 
						
							| 42 |  | recidnq |  |-  ( w e. Q. -> ( w .Q ( *Q ` w ) ) = 1Q ) | 
						
							| 43 | 41 42 | oveqan12d |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( ( ( *Q ` v ) .Q v ) .Q ( w .Q ( *Q ` w ) ) ) = ( 1Q .Q 1Q ) ) | 
						
							| 44 |  | vex |  |-  v e. _V | 
						
							| 45 |  | mulassnq |  |-  ( ( x .Q y ) .Q u ) = ( x .Q ( y .Q u ) ) | 
						
							| 46 |  | fvex |  |-  ( *Q ` w ) e. _V | 
						
							| 47 | 31 44 33 34 45 46 | caov4 |  |-  ( ( ( *Q ` v ) .Q v ) .Q ( w .Q ( *Q ` w ) ) ) = ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) | 
						
							| 48 |  | mulidnq |  |-  ( 1Q e. Q. -> ( 1Q .Q 1Q ) = 1Q ) | 
						
							| 49 | 6 48 | ax-mp |  |-  ( 1Q .Q 1Q ) = 1Q | 
						
							| 50 | 43 47 49 | 3eqtr3g |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) | 
						
							| 51 |  | recclnq |  |-  ( v e. Q. -> ( *Q ` v ) e. Q. ) | 
						
							| 52 |  | mulclnq |  |-  ( ( ( *Q ` v ) e. Q. /\ w e. Q. ) -> ( ( *Q ` v ) .Q w ) e. Q. ) | 
						
							| 53 | 51 52 | sylan |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` v ) .Q w ) e. Q. ) | 
						
							| 54 |  | recmulnq |  |-  ( ( ( *Q ` v ) .Q w ) e. Q. -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) <-> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) ) | 
						
							| 55 | 53 54 | syl |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) <-> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) ) | 
						
							| 56 | 50 55 | mpbird |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) ) | 
						
							| 57 | 56 | eleq1d |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A <-> ( v .Q ( *Q ` w ) ) e. A ) ) | 
						
							| 58 | 57 | notbid |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A <-> -. ( v .Q ( *Q ` w ) ) e. A ) ) | 
						
							| 59 | 58 | biimprd |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( -. ( v .Q ( *Q ` w ) ) e. A -> -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) | 
						
							| 60 | 38 59 | anim12d |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( ( v  ( ( ( *Q ` z ) .Q w )  | 
						
							| 61 |  | ovex |  |-  ( ( *Q ` v ) .Q w ) e. _V | 
						
							| 62 |  | breq2 |  |-  ( y = ( ( *Q ` v ) .Q w ) -> ( ( ( *Q ` z ) .Q w )  ( ( *Q ` z ) .Q w )  | 
						
							| 63 |  | fveq2 |  |-  ( y = ( ( *Q ` v ) .Q w ) -> ( *Q ` y ) = ( *Q ` ( ( *Q ` v ) .Q w ) ) ) | 
						
							| 64 | 63 | eleq1d |  |-  ( y = ( ( *Q ` v ) .Q w ) -> ( ( *Q ` y ) e. A <-> ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) | 
						
							| 65 | 64 | notbid |  |-  ( y = ( ( *Q ` v ) .Q w ) -> ( -. ( *Q ` y ) e. A <-> -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) | 
						
							| 66 | 62 65 | anbi12d |  |-  ( y = ( ( *Q ` v ) .Q w ) -> ( ( ( ( *Q ` z ) .Q w )  ( ( ( *Q ` z ) .Q w )  | 
						
							| 67 | 61 66 | spcev |  |-  ( ( ( ( *Q ` z ) .Q w )  E. y ( ( ( *Q ` z ) .Q w )  | 
						
							| 68 |  | ovex |  |-  ( ( *Q ` z ) .Q w ) e. _V | 
						
							| 69 |  | breq1 |  |-  ( x = ( ( *Q ` z ) .Q w ) -> ( x  ( ( *Q ` z ) .Q w )  | 
						
							| 70 | 69 | anbi1d |  |-  ( x = ( ( *Q ` z ) .Q w ) -> ( ( x  ( ( ( *Q ` z ) .Q w )  | 
						
							| 71 | 70 | exbidv |  |-  ( x = ( ( *Q ` z ) .Q w ) -> ( E. y ( x  E. y ( ( ( *Q ` z ) .Q w )  | 
						
							| 72 | 68 71 1 | elab2 |  |-  ( ( ( *Q ` z ) .Q w ) e. B <-> E. y ( ( ( *Q ` z ) .Q w )  | 
						
							| 73 | 67 72 | sylibr |  |-  ( ( ( ( *Q ` z ) .Q w )  ( ( *Q ` z ) .Q w ) e. B ) | 
						
							| 74 | 60 73 | syl6 |  |-  ( ( v e. Q. /\ w e. Q. ) -> ( ( v  ( ( *Q ` z ) .Q w ) e. B ) ) | 
						
							| 75 | 74 | imp |  |-  ( ( ( v e. Q. /\ w e. Q. ) /\ ( v  ( ( *Q ` z ) .Q w ) e. B ) | 
						
							| 76 | 21 26 27 28 75 | syl22anc |  |-  ( ( ( A e. P. /\ w  ( ( *Q ` z ) .Q w ) e. B ) | 
						
							| 77 | 23 | brel |  |-  ( v  ( v e. Q. /\ z e. Q. ) ) | 
						
							| 78 | 77 | simprd |  |-  ( v  z e. Q. ) | 
						
							| 79 | 78 | 3ad2ant3 |  |-  ( ( ( A e. P. /\ w  z e. Q. ) | 
						
							| 80 |  | mulidnq |  |-  ( w e. Q. -> ( w .Q 1Q ) = w ) | 
						
							| 81 |  | mulcomnq |  |-  ( w .Q 1Q ) = ( 1Q .Q w ) | 
						
							| 82 | 80 81 | eqtr3di |  |-  ( w e. Q. -> w = ( 1Q .Q w ) ) | 
						
							| 83 |  | recidnq |  |-  ( z e. Q. -> ( z .Q ( *Q ` z ) ) = 1Q ) | 
						
							| 84 | 83 | oveq1d |  |-  ( z e. Q. -> ( ( z .Q ( *Q ` z ) ) .Q w ) = ( 1Q .Q w ) ) | 
						
							| 85 |  | mulassnq |  |-  ( ( z .Q ( *Q ` z ) ) .Q w ) = ( z .Q ( ( *Q ` z ) .Q w ) ) | 
						
							| 86 | 84 85 | eqtr3di |  |-  ( z e. Q. -> ( 1Q .Q w ) = ( z .Q ( ( *Q ` z ) .Q w ) ) ) | 
						
							| 87 | 82 86 | sylan9eqr |  |-  ( ( z e. Q. /\ w e. Q. ) -> w = ( z .Q ( ( *Q ` z ) .Q w ) ) ) | 
						
							| 88 | 79 26 87 | syl2anc |  |-  ( ( ( A e. P. /\ w  w = ( z .Q ( ( *Q ` z ) .Q w ) ) ) | 
						
							| 89 |  | oveq2 |  |-  ( x = ( ( *Q ` z ) .Q w ) -> ( z .Q x ) = ( z .Q ( ( *Q ` z ) .Q w ) ) ) | 
						
							| 90 | 89 | rspceeqv |  |-  ( ( ( ( *Q ` z ) .Q w ) e. B /\ w = ( z .Q ( ( *Q ` z ) .Q w ) ) ) -> E. x e. B w = ( z .Q x ) ) | 
						
							| 91 | 76 88 90 | syl2anc |  |-  ( ( ( A e. P. /\ w  E. x e. B w = ( z .Q x ) ) | 
						
							| 92 | 91 | 3expia |  |-  ( ( ( A e. P. /\ w  ( v  E. x e. B w = ( z .Q x ) ) ) | 
						
							| 93 | 92 | reximdv |  |-  ( ( ( A e. P. /\ w  ( E. z e. A v  E. z e. A E. x e. B w = ( z .Q x ) ) ) | 
						
							| 94 | 1 | reclem2pr |  |-  ( A e. P. -> B e. P. ) | 
						
							| 95 |  | df-mp |  |-  .P. = ( y e. P. , w e. P. |-> { u | E. f e. y E. g e. w u = ( f .Q g ) } ) | 
						
							| 96 |  | mulclnq |  |-  ( ( f e. Q. /\ g e. Q. ) -> ( f .Q g ) e. Q. ) | 
						
							| 97 | 95 96 | genpelv |  |-  ( ( A e. P. /\ B e. P. ) -> ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) | 
						
							| 98 | 94 97 | mpdan |  |-  ( A e. P. -> ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) | 
						
							| 99 | 98 | ad2antrr |  |-  ( ( ( A e. P. /\ w  ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) | 
						
							| 100 | 93 99 | sylibrd |  |-  ( ( ( A e. P. /\ w  ( E. z e. A v  w e. ( A .P. B ) ) ) | 
						
							| 101 | 18 100 | mpd |  |-  ( ( ( A e. P. /\ w  w e. ( A .P. B ) ) | 
						
							| 102 | 16 101 | rexlimddv |  |-  ( ( A e. P. /\ w  w e. ( A .P. B ) ) | 
						
							| 103 | 102 | ex |  |-  ( A e. P. -> ( w  w e. ( A .P. B ) ) ) | 
						
							| 104 | 3 103 | biimtrid |  |-  ( A e. P. -> ( w e. 1P -> w e. ( A .P. B ) ) ) | 
						
							| 105 | 104 | ssrdv |  |-  ( A e. P. -> 1P C_ ( A .P. B ) ) |