Step |
Hyp |
Ref |
Expression |
1 |
|
mulnqf |
|- .Q : ( Q. X. Q. ) --> Q. |
2 |
1
|
fdmi |
|- dom .Q = ( Q. X. Q. ) |
3 |
|
ltrelnq |
|- |
4 |
|
0nnq |
|- -. (/) e. Q. |
5 |
|
elpqn |
|- ( C e. Q. -> C e. ( N. X. N. ) ) |
6 |
5
|
3ad2ant3 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C e. ( N. X. N. ) ) |
7 |
|
xp1st |
|- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
8 |
6 7
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` C ) e. N. ) |
9 |
|
xp2nd |
|- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
10 |
6 9
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` C ) e. N. ) |
11 |
|
mulclpi |
|- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) |
12 |
8 10 11
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) |
13 |
|
ltmpi |
|- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) |
14 |
12 13
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) |
15 |
|
fvex |
|- ( 1st ` C ) e. _V |
16 |
|
fvex |
|- ( 2nd ` C ) e. _V |
17 |
|
fvex |
|- ( 1st ` A ) e. _V |
18 |
|
mulcompi |
|- ( x .N y ) = ( y .N x ) |
19 |
|
mulasspi |
|- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
20 |
|
fvex |
|- ( 2nd ` B ) e. _V |
21 |
15 16 17 18 19 20
|
caov4 |
|- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 1st ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
22 |
|
fvex |
|- ( 1st ` B ) e. _V |
23 |
|
fvex |
|- ( 2nd ` A ) e. _V |
24 |
15 16 22 18 19 23
|
caov4 |
|- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` C ) .N ( 1st ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` A ) ) ) |
25 |
21 24
|
breq12i |
|- ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ( ( ( 1st ` C ) .N ( 1st ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
26 |
14 25
|
bitrdi |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) ( ( ( 1st ` C ) .N ( 1st ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
27 |
|
ordpipq |
|- ( <. ( ( 1st ` C ) .N ( 1st ` A ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. . <-> ( ( ( 1st ` C ) .N ( 1st ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
28 |
26 27
|
bitr4di |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) <. ( ( 1st ` C ) .N ( 1st ` A ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. . ) ) |
29 |
|
elpqn |
|- ( A e. Q. -> A e. ( N. X. N. ) ) |
30 |
29
|
3ad2ant1 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A e. ( N. X. N. ) ) |
31 |
|
mulpipq2 |
|- ( ( C e. ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> ( C .pQ A ) = <. ( ( 1st ` C ) .N ( 1st ` A ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. ) |
32 |
6 30 31
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C .pQ A ) = <. ( ( 1st ` C ) .N ( 1st ` A ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. ) |
33 |
|
elpqn |
|- ( B e. Q. -> B e. ( N. X. N. ) ) |
34 |
33
|
3ad2ant2 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> B e. ( N. X. N. ) ) |
35 |
|
mulpipq2 |
|- ( ( C e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( C .pQ B ) = <. ( ( 1st ` C ) .N ( 1st ` B ) ) , ( ( 2nd ` C ) .N ( 2nd ` B ) ) >. ) |
36 |
6 34 35
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C .pQ B ) = <. ( ( 1st ` C ) .N ( 1st ` B ) ) , ( ( 2nd ` C ) .N ( 2nd ` B ) ) >. ) |
37 |
32 36
|
breq12d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C .pQ A ) <. ( ( 1st ` C ) .N ( 1st ` A ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. . ) ) |
38 |
28 37
|
bitr4d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) ( C .pQ A ) |
39 |
|
ordpinq |
|- ( ( A e. Q. /\ B e. Q. ) -> ( A ( ( 1st ` A ) .N ( 2nd ` B ) ) |
40 |
39
|
3adant3 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A ( ( 1st ` A ) .N ( 2nd ` B ) ) |
41 |
|
mulpqnq |
|- ( ( C e. Q. /\ A e. Q. ) -> ( C .Q A ) = ( /Q ` ( C .pQ A ) ) ) |
42 |
41
|
ancoms |
|- ( ( A e. Q. /\ C e. Q. ) -> ( C .Q A ) = ( /Q ` ( C .pQ A ) ) ) |
43 |
42
|
3adant2 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C .Q A ) = ( /Q ` ( C .pQ A ) ) ) |
44 |
|
mulpqnq |
|- ( ( C e. Q. /\ B e. Q. ) -> ( C .Q B ) = ( /Q ` ( C .pQ B ) ) ) |
45 |
44
|
ancoms |
|- ( ( B e. Q. /\ C e. Q. ) -> ( C .Q B ) = ( /Q ` ( C .pQ B ) ) ) |
46 |
45
|
3adant1 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C .Q B ) = ( /Q ` ( C .pQ B ) ) ) |
47 |
43 46
|
breq12d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C .Q A ) ( /Q ` ( C .pQ A ) ) |
48 |
|
lterpq |
|- ( ( C .pQ A ) ( /Q ` ( C .pQ A ) ) |
49 |
47 48
|
bitr4di |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C .Q A ) ( C .pQ A ) |
50 |
38 40 49
|
3bitr4d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A ( C .Q A ) |
51 |
2 3 4 50
|
ndmovord |
|- ( C e. Q. -> ( A ( C .Q A ) |