| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ndmov.1 | 
							 |-  dom F = ( S X. S )  | 
						
						
							| 2 | 
							
								
							 | 
							ndmovord.4 | 
							 |-  R C_ ( S X. S )  | 
						
						
							| 3 | 
							
								
							 | 
							ndmovord.5 | 
							 |-  -. (/) e. S  | 
						
						
							| 4 | 
							
								
							 | 
							ndmovord.6 | 
							 |-  ( ( A e. S /\ B e. S /\ C e. S ) -> ( A R B <-> ( C F A ) R ( C F B ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3expia | 
							 |-  ( ( A e. S /\ B e. S ) -> ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) )  | 
						
						
							| 6 | 
							
								2
							 | 
							brel | 
							 |-  ( A R B -> ( A e. S /\ B e. S ) )  | 
						
						
							| 7 | 
							
								2
							 | 
							brel | 
							 |-  ( ( C F A ) R ( C F B ) -> ( ( C F A ) e. S /\ ( C F B ) e. S ) )  | 
						
						
							| 8 | 
							
								1 3
							 | 
							ndmovrcl | 
							 |-  ( ( C F A ) e. S -> ( C e. S /\ A e. S ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simprd | 
							 |-  ( ( C F A ) e. S -> A e. S )  | 
						
						
							| 10 | 
							
								1 3
							 | 
							ndmovrcl | 
							 |-  ( ( C F B ) e. S -> ( C e. S /\ B e. S ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simprd | 
							 |-  ( ( C F B ) e. S -> B e. S )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							anim12i | 
							 |-  ( ( ( C F A ) e. S /\ ( C F B ) e. S ) -> ( A e. S /\ B e. S ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							syl | 
							 |-  ( ( C F A ) R ( C F B ) -> ( A e. S /\ B e. S ) )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							pm5.21ni | 
							 |-  ( -. ( A e. S /\ B e. S ) -> ( A R B <-> ( C F A ) R ( C F B ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							a1d | 
							 |-  ( -. ( A e. S /\ B e. S ) -> ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							pm2.61i | 
							 |-  ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) )  |