| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ndmov.1 | 
							⊢ dom  𝐹  =  ( 𝑆  ×  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							ndmovord.4 | 
							⊢ 𝑅  ⊆  ( 𝑆  ×  𝑆 )  | 
						
						
							| 3 | 
							
								
							 | 
							ndmovord.5 | 
							⊢ ¬  ∅  ∈  𝑆  | 
						
						
							| 4 | 
							
								
							 | 
							ndmovord.6 | 
							⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  ( 𝐴 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3expia | 
							⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐶  ∈  𝑆  →  ( 𝐴 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) )  | 
						
						
							| 6 | 
							
								2
							 | 
							brel | 
							⊢ ( 𝐴 𝑅 𝐵  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  | 
						
						
							| 7 | 
							
								2
							 | 
							brel | 
							⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 )  →  ( ( 𝐶 𝐹 𝐴 )  ∈  𝑆  ∧  ( 𝐶 𝐹 𝐵 )  ∈  𝑆 ) )  | 
						
						
							| 8 | 
							
								1 3
							 | 
							ndmovrcl | 
							⊢ ( ( 𝐶 𝐹 𝐴 )  ∈  𝑆  →  ( 𝐶  ∈  𝑆  ∧  𝐴  ∈  𝑆 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simprd | 
							⊢ ( ( 𝐶 𝐹 𝐴 )  ∈  𝑆  →  𝐴  ∈  𝑆 )  | 
						
						
							| 10 | 
							
								1 3
							 | 
							ndmovrcl | 
							⊢ ( ( 𝐶 𝐹 𝐵 )  ∈  𝑆  →  ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simprd | 
							⊢ ( ( 𝐶 𝐹 𝐵 )  ∈  𝑆  →  𝐵  ∈  𝑆 )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							anim12i | 
							⊢ ( ( ( 𝐶 𝐹 𝐴 )  ∈  𝑆  ∧  ( 𝐶 𝐹 𝐵 )  ∈  𝑆 )  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							syl | 
							⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 )  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							pm5.21ni | 
							⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							a1d | 
							⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐶  ∈  𝑆  →  ( 𝐴 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							pm2.61i | 
							⊢ ( 𝐶  ∈  𝑆  →  ( 𝐴 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  |