| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ndmovordi.2 | 
							⊢ dom  𝐹  =  ( 𝑆  ×  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							ndmovordi.4 | 
							⊢ 𝑅  ⊆  ( 𝑆  ×  𝑆 )  | 
						
						
							| 3 | 
							
								
							 | 
							ndmovordi.5 | 
							⊢ ¬  ∅  ∈  𝑆  | 
						
						
							| 4 | 
							
								
							 | 
							ndmovordi.6 | 
							⊢ ( 𝐶  ∈  𝑆  →  ( 𝐴 𝑅 𝐵  ↔  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )  | 
						
						
							| 5 | 
							
								2
							 | 
							brel | 
							⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 )  →  ( ( 𝐶 𝐹 𝐴 )  ∈  𝑆  ∧  ( 𝐶 𝐹 𝐵 )  ∈  𝑆 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simpld | 
							⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 )  →  ( 𝐶 𝐹 𝐴 )  ∈  𝑆 )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							ndmovrcl | 
							⊢ ( ( 𝐶 𝐹 𝐴 )  ∈  𝑆  →  ( 𝐶  ∈  𝑆  ∧  𝐴  ∈  𝑆 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simpld | 
							⊢ ( ( 𝐶 𝐹 𝐴 )  ∈  𝑆  →  𝐶  ∈  𝑆 )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							syl | 
							⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 )  →  𝐶  ∈  𝑆 )  | 
						
						
							| 10 | 
							
								4
							 | 
							biimprd | 
							⊢ ( 𝐶  ∈  𝑆  →  ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 )  →  𝐴 𝑅 𝐵 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mpcom | 
							⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 )  →  𝐴 𝑅 𝐵 )  |