Metamath Proof Explorer


Theorem nfcxfr

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nfcxfr.1 𝐴 = 𝐵
nfcxfr.2 𝑥 𝐵
Assertion nfcxfr 𝑥 𝐴

Proof

Step Hyp Ref Expression
1 nfcxfr.1 𝐴 = 𝐵
2 nfcxfr.2 𝑥 𝐵
3 1 nfceqi ( 𝑥 𝐴 𝑥 𝐵 )
4 2 3 mpbir 𝑥 𝐴