Metamath Proof Explorer


Theorem nfcxfrd

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 ( 𝜑 𝑥 𝐵 )
Assertion nfcxfrd ( 𝜑 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 nfcxfr.1 𝐴 = 𝐵
2 nfcxfrd.2 ( 𝜑 𝑥 𝐵 )
3 1 nfceqi ( 𝑥 𝐴 𝑥 𝐵 )
4 2 3 sylibr ( 𝜑 𝑥 𝐴 )