Metamath Proof Explorer
Description: A utility lemma to transfer a bound-variable hypothesis builder into a
definition. (Contributed by Mario Carneiro, 11-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfcxfr.1 |
⊢ 𝐴 = 𝐵 |
|
|
nfcxfrd.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
|
Assertion |
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfcxfr.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
nfcxfrd.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
3 |
1
|
nfceqi |
⊢ ( Ⅎ 𝑥 𝐴 ↔ Ⅎ 𝑥 𝐵 ) |
4 |
2 3
|
sylibr |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |