Metamath Proof Explorer


Theorem nfcxfrd

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nfcxfr.1 A=B
nfcxfrd.2 φ_xB
Assertion nfcxfrd φ_xA

Proof

Step Hyp Ref Expression
1 nfcxfr.1 A=B
2 nfcxfrd.2 φ_xB
3 1 nfceqi _xA_xB
4 2 3 sylibr φ_xA