| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2fveq3 | ⊢ ( 𝑥  =  𝐴  →  ( *Q ‘ ( *Q ‘ 𝑥 ) )  =  ( *Q ‘ ( *Q ‘ 𝐴 ) ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( *Q ‘ ( *Q ‘ 𝑥 ) )  =  𝑥  ↔  ( *Q ‘ ( *Q ‘ 𝐴 ) )  =  𝐴 ) ) | 
						
							| 4 |  | mulcomnq | ⊢ ( ( *Q ‘ 𝑥 )  ·Q  𝑥 )  =  ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) ) | 
						
							| 5 |  | recidnq | ⊢ ( 𝑥  ∈  Q  →  ( 𝑥  ·Q  ( *Q ‘ 𝑥 ) )  =  1Q ) | 
						
							| 6 | 4 5 | eqtrid | ⊢ ( 𝑥  ∈  Q  →  ( ( *Q ‘ 𝑥 )  ·Q  𝑥 )  =  1Q ) | 
						
							| 7 |  | recclnq | ⊢ ( 𝑥  ∈  Q  →  ( *Q ‘ 𝑥 )  ∈  Q ) | 
						
							| 8 |  | recmulnq | ⊢ ( ( *Q ‘ 𝑥 )  ∈  Q  →  ( ( *Q ‘ ( *Q ‘ 𝑥 ) )  =  𝑥  ↔  ( ( *Q ‘ 𝑥 )  ·Q  𝑥 )  =  1Q ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑥  ∈  Q  →  ( ( *Q ‘ ( *Q ‘ 𝑥 ) )  =  𝑥  ↔  ( ( *Q ‘ 𝑥 )  ·Q  𝑥 )  =  1Q ) ) | 
						
							| 10 | 6 9 | mpbird | ⊢ ( 𝑥  ∈  Q  →  ( *Q ‘ ( *Q ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 11 | 3 10 | vtoclga | ⊢ ( 𝐴  ∈  Q  →  ( *Q ‘ ( *Q ‘ 𝐴 ) )  =  𝐴 ) |