| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( z = w -> ( z  w  | 
						
							| 2 | 1 | anbi1d |  |-  ( z = w -> ( ( z  ( w  | 
						
							| 3 | 2 | exbidv |  |-  ( z = w -> ( E. y ( z  E. y ( w  | 
						
							| 4 | 3 | cbvabv |  |-  { z | E. y ( z  | 
						
							| 5 | 4 | reclem2pr |  |-  ( A e. P. -> { z | E. y ( z  | 
						
							| 6 | 4 | reclem4pr |  |-  ( A e. P. -> ( A .P. { z | E. y ( z  | 
						
							| 7 |  | oveq2 |  |-  ( x = { z | E. y ( z  ( A .P. x ) = ( A .P. { z | E. y ( z  | 
						
							| 8 | 7 | eqeq1d |  |-  ( x = { z | E. y ( z  ( ( A .P. x ) = 1P <-> ( A .P. { z | E. y ( z  | 
						
							| 9 | 8 | rspcev |  |-  ( ( { z | E. y ( z  E. x e. P. ( A .P. x ) = 1P ) | 
						
							| 10 | 5 6 9 | syl2anc |  |-  ( A e. P. -> E. x e. P. ( A .P. x ) = 1P ) |