| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|- ( z = w -> ( z w |
| 2 |
1
|
anbi1d |
|- ( z = w -> ( ( z ( w |
| 3 |
2
|
exbidv |
|- ( z = w -> ( E. y ( z E. y ( w |
| 4 |
3
|
cbvabv |
|- { z | E. y ( z |
| 5 |
4
|
reclem2pr |
|- ( A e. P. -> { z | E. y ( z |
| 6 |
4
|
reclem4pr |
|- ( A e. P. -> ( A .P. { z | E. y ( z |
| 7 |
|
oveq2 |
|- ( x = { z | E. y ( z ( A .P. x ) = ( A .P. { z | E. y ( z |
| 8 |
7
|
eqeq1d |
|- ( x = { z | E. y ( z ( ( A .P. x ) = 1P <-> ( A .P. { z | E. y ( z |
| 9 |
8
|
rspcev |
|- ( ( { z | E. y ( z E. x e. P. ( A .P. x ) = 1P ) |
| 10 |
5 6 9
|
syl2anc |
|- ( A e. P. -> E. x e. P. ( A .P. x ) = 1P ) |