| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elreal |  | 
						
							| 2 |  | df-rex |  | 
						
							| 3 | 1 2 | bitri |  | 
						
							| 4 |  | neeq1 |  | 
						
							| 5 |  | oveq1 |  | 
						
							| 6 | 5 | eqeq1d |  | 
						
							| 7 | 6 | rexbidv |  | 
						
							| 8 | 4 7 | imbi12d |  | 
						
							| 9 |  | df-0 |  | 
						
							| 10 | 9 | eqeq2i |  | 
						
							| 11 |  | vex |  | 
						
							| 12 | 11 | eqresr |  | 
						
							| 13 | 10 12 | bitri |  | 
						
							| 14 | 13 | necon3bii |  | 
						
							| 15 |  | recexsr |  | 
						
							| 16 | 15 | ex |  | 
						
							| 17 |  | opelreal |  | 
						
							| 18 | 17 | anbi1i |  | 
						
							| 19 |  | mulresr |  | 
						
							| 20 | 19 | eqeq1d |  | 
						
							| 21 |  | df-1 |  | 
						
							| 22 | 21 | eqeq2i |  | 
						
							| 23 |  | ovex |  | 
						
							| 24 | 23 | eqresr |  | 
						
							| 25 | 22 24 | bitri |  | 
						
							| 26 | 20 25 | bitrdi |  | 
						
							| 27 | 26 | pm5.32da |  | 
						
							| 28 | 18 27 | bitrid |  | 
						
							| 29 |  | oveq2 |  | 
						
							| 30 | 29 | eqeq1d |  | 
						
							| 31 | 30 | rspcev |  | 
						
							| 32 | 28 31 | biimtrrdi |  | 
						
							| 33 | 32 | expd |  | 
						
							| 34 | 33 | rexlimdv |  | 
						
							| 35 | 16 34 | syld |  | 
						
							| 36 | 14 35 | biimtrid |  | 
						
							| 37 | 3 8 36 | gencl |  | 
						
							| 38 | 37 | imp |  |