Step |
Hyp |
Ref |
Expression |
1 |
|
elreal |
|- ( A e. RR <-> E. y e. R. <. y , 0R >. = A ) |
2 |
|
df-rex |
|- ( E. y e. R. <. y , 0R >. = A <-> E. y ( y e. R. /\ <. y , 0R >. = A ) ) |
3 |
1 2
|
bitri |
|- ( A e. RR <-> E. y ( y e. R. /\ <. y , 0R >. = A ) ) |
4 |
|
neeq1 |
|- ( <. y , 0R >. = A -> ( <. y , 0R >. =/= 0 <-> A =/= 0 ) ) |
5 |
|
oveq1 |
|- ( <. y , 0R >. = A -> ( <. y , 0R >. x. x ) = ( A x. x ) ) |
6 |
5
|
eqeq1d |
|- ( <. y , 0R >. = A -> ( ( <. y , 0R >. x. x ) = 1 <-> ( A x. x ) = 1 ) ) |
7 |
6
|
rexbidv |
|- ( <. y , 0R >. = A -> ( E. x e. RR ( <. y , 0R >. x. x ) = 1 <-> E. x e. RR ( A x. x ) = 1 ) ) |
8 |
4 7
|
imbi12d |
|- ( <. y , 0R >. = A -> ( ( <. y , 0R >. =/= 0 -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) <-> ( A =/= 0 -> E. x e. RR ( A x. x ) = 1 ) ) ) |
9 |
|
df-0 |
|- 0 = <. 0R , 0R >. |
10 |
9
|
eqeq2i |
|- ( <. y , 0R >. = 0 <-> <. y , 0R >. = <. 0R , 0R >. ) |
11 |
|
vex |
|- y e. _V |
12 |
11
|
eqresr |
|- ( <. y , 0R >. = <. 0R , 0R >. <-> y = 0R ) |
13 |
10 12
|
bitri |
|- ( <. y , 0R >. = 0 <-> y = 0R ) |
14 |
13
|
necon3bii |
|- ( <. y , 0R >. =/= 0 <-> y =/= 0R ) |
15 |
|
recexsr |
|- ( ( y e. R. /\ y =/= 0R ) -> E. z e. R. ( y .R z ) = 1R ) |
16 |
15
|
ex |
|- ( y e. R. -> ( y =/= 0R -> E. z e. R. ( y .R z ) = 1R ) ) |
17 |
|
opelreal |
|- ( <. z , 0R >. e. RR <-> z e. R. ) |
18 |
17
|
anbi1i |
|- ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) ) |
19 |
|
mulresr |
|- ( ( y e. R. /\ z e. R. ) -> ( <. y , 0R >. x. <. z , 0R >. ) = <. ( y .R z ) , 0R >. ) |
20 |
19
|
eqeq1d |
|- ( ( y e. R. /\ z e. R. ) -> ( ( <. y , 0R >. x. <. z , 0R >. ) = 1 <-> <. ( y .R z ) , 0R >. = 1 ) ) |
21 |
|
df-1 |
|- 1 = <. 1R , 0R >. |
22 |
21
|
eqeq2i |
|- ( <. ( y .R z ) , 0R >. = 1 <-> <. ( y .R z ) , 0R >. = <. 1R , 0R >. ) |
23 |
|
ovex |
|- ( y .R z ) e. _V |
24 |
23
|
eqresr |
|- ( <. ( y .R z ) , 0R >. = <. 1R , 0R >. <-> ( y .R z ) = 1R ) |
25 |
22 24
|
bitri |
|- ( <. ( y .R z ) , 0R >. = 1 <-> ( y .R z ) = 1R ) |
26 |
20 25
|
bitrdi |
|- ( ( y e. R. /\ z e. R. ) -> ( ( <. y , 0R >. x. <. z , 0R >. ) = 1 <-> ( y .R z ) = 1R ) ) |
27 |
26
|
pm5.32da |
|- ( y e. R. -> ( ( z e. R. /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( y .R z ) = 1R ) ) ) |
28 |
18 27
|
syl5bb |
|- ( y e. R. -> ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( y .R z ) = 1R ) ) ) |
29 |
|
oveq2 |
|- ( x = <. z , 0R >. -> ( <. y , 0R >. x. x ) = ( <. y , 0R >. x. <. z , 0R >. ) ) |
30 |
29
|
eqeq1d |
|- ( x = <. z , 0R >. -> ( ( <. y , 0R >. x. x ) = 1 <-> ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) ) |
31 |
30
|
rspcev |
|- ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) |
32 |
28 31
|
syl6bir |
|- ( y e. R. -> ( ( z e. R. /\ ( y .R z ) = 1R ) -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) |
33 |
32
|
expd |
|- ( y e. R. -> ( z e. R. -> ( ( y .R z ) = 1R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) ) |
34 |
33
|
rexlimdv |
|- ( y e. R. -> ( E. z e. R. ( y .R z ) = 1R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) |
35 |
16 34
|
syld |
|- ( y e. R. -> ( y =/= 0R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) |
36 |
14 35
|
syl5bi |
|- ( y e. R. -> ( <. y , 0R >. =/= 0 -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) |
37 |
3 8 36
|
gencl |
|- ( A e. RR -> ( A =/= 0 -> E. x e. RR ( A x. x ) = 1 ) ) |
38 |
37
|
imp |
|- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |