| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elreal |  |-  ( A e. RR <-> E. y e. R. <. y , 0R >. = A ) | 
						
							| 2 |  | df-rex |  |-  ( E. y e. R. <. y , 0R >. = A <-> E. y ( y e. R. /\ <. y , 0R >. = A ) ) | 
						
							| 3 | 1 2 | bitri |  |-  ( A e. RR <-> E. y ( y e. R. /\ <. y , 0R >. = A ) ) | 
						
							| 4 |  | neeq1 |  |-  ( <. y , 0R >. = A -> ( <. y , 0R >. =/= 0 <-> A =/= 0 ) ) | 
						
							| 5 |  | oveq1 |  |-  ( <. y , 0R >. = A -> ( <. y , 0R >. x. x ) = ( A x. x ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( <. y , 0R >. = A -> ( ( <. y , 0R >. x. x ) = 1 <-> ( A x. x ) = 1 ) ) | 
						
							| 7 | 6 | rexbidv |  |-  ( <. y , 0R >. = A -> ( E. x e. RR ( <. y , 0R >. x. x ) = 1 <-> E. x e. RR ( A x. x ) = 1 ) ) | 
						
							| 8 | 4 7 | imbi12d |  |-  ( <. y , 0R >. = A -> ( ( <. y , 0R >. =/= 0 -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) <-> ( A =/= 0 -> E. x e. RR ( A x. x ) = 1 ) ) ) | 
						
							| 9 |  | df-0 |  |-  0 = <. 0R , 0R >. | 
						
							| 10 | 9 | eqeq2i |  |-  ( <. y , 0R >. = 0 <-> <. y , 0R >. = <. 0R , 0R >. ) | 
						
							| 11 |  | vex |  |-  y e. _V | 
						
							| 12 | 11 | eqresr |  |-  ( <. y , 0R >. = <. 0R , 0R >. <-> y = 0R ) | 
						
							| 13 | 10 12 | bitri |  |-  ( <. y , 0R >. = 0 <-> y = 0R ) | 
						
							| 14 | 13 | necon3bii |  |-  ( <. y , 0R >. =/= 0 <-> y =/= 0R ) | 
						
							| 15 |  | recexsr |  |-  ( ( y e. R. /\ y =/= 0R ) -> E. z e. R. ( y .R z ) = 1R ) | 
						
							| 16 | 15 | ex |  |-  ( y e. R. -> ( y =/= 0R -> E. z e. R. ( y .R z ) = 1R ) ) | 
						
							| 17 |  | opelreal |  |-  ( <. z , 0R >. e. RR <-> z e. R. ) | 
						
							| 18 | 17 | anbi1i |  |-  ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) ) | 
						
							| 19 |  | mulresr |  |-  ( ( y e. R. /\ z e. R. ) -> ( <. y , 0R >. x. <. z , 0R >. ) = <. ( y .R z ) , 0R >. ) | 
						
							| 20 | 19 | eqeq1d |  |-  ( ( y e. R. /\ z e. R. ) -> ( ( <. y , 0R >. x. <. z , 0R >. ) = 1 <-> <. ( y .R z ) , 0R >. = 1 ) ) | 
						
							| 21 |  | df-1 |  |-  1 = <. 1R , 0R >. | 
						
							| 22 | 21 | eqeq2i |  |-  ( <. ( y .R z ) , 0R >. = 1 <-> <. ( y .R z ) , 0R >. = <. 1R , 0R >. ) | 
						
							| 23 |  | ovex |  |-  ( y .R z ) e. _V | 
						
							| 24 | 23 | eqresr |  |-  ( <. ( y .R z ) , 0R >. = <. 1R , 0R >. <-> ( y .R z ) = 1R ) | 
						
							| 25 | 22 24 | bitri |  |-  ( <. ( y .R z ) , 0R >. = 1 <-> ( y .R z ) = 1R ) | 
						
							| 26 | 20 25 | bitrdi |  |-  ( ( y e. R. /\ z e. R. ) -> ( ( <. y , 0R >. x. <. z , 0R >. ) = 1 <-> ( y .R z ) = 1R ) ) | 
						
							| 27 | 26 | pm5.32da |  |-  ( y e. R. -> ( ( z e. R. /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( y .R z ) = 1R ) ) ) | 
						
							| 28 | 18 27 | bitrid |  |-  ( y e. R. -> ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( y .R z ) = 1R ) ) ) | 
						
							| 29 |  | oveq2 |  |-  ( x = <. z , 0R >. -> ( <. y , 0R >. x. x ) = ( <. y , 0R >. x. <. z , 0R >. ) ) | 
						
							| 30 | 29 | eqeq1d |  |-  ( x = <. z , 0R >. -> ( ( <. y , 0R >. x. x ) = 1 <-> ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) ) | 
						
							| 31 | 30 | rspcev |  |-  ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) | 
						
							| 32 | 28 31 | biimtrrdi |  |-  ( y e. R. -> ( ( z e. R. /\ ( y .R z ) = 1R ) -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) | 
						
							| 33 | 32 | expd |  |-  ( y e. R. -> ( z e. R. -> ( ( y .R z ) = 1R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) ) | 
						
							| 34 | 33 | rexlimdv |  |-  ( y e. R. -> ( E. z e. R. ( y .R z ) = 1R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) | 
						
							| 35 | 16 34 | syld |  |-  ( y e. R. -> ( y =/= 0R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) | 
						
							| 36 | 14 35 | biimtrid |  |-  ( y e. R. -> ( <. y , 0R >. =/= 0 -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) | 
						
							| 37 | 3 8 36 | gencl |  |-  ( A e. RR -> ( A =/= 0 -> E. x e. RR ( A x. x ) = 1 ) ) | 
						
							| 38 | 37 | imp |  |-  ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |