| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0r |
|- 0R e. R. |
| 2 |
|
mulcnsr |
|- ( ( ( A e. R. /\ 0R e. R. ) /\ ( B e. R. /\ 0R e. R. ) ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) , ( ( 0R .R B ) +R ( A .R 0R ) ) >. ) |
| 3 |
2
|
an4s |
|- ( ( ( A e. R. /\ B e. R. ) /\ ( 0R e. R. /\ 0R e. R. ) ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) , ( ( 0R .R B ) +R ( A .R 0R ) ) >. ) |
| 4 |
1 1 3
|
mpanr12 |
|- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) , ( ( 0R .R B ) +R ( A .R 0R ) ) >. ) |
| 5 |
|
00sr |
|- ( 0R e. R. -> ( 0R .R 0R ) = 0R ) |
| 6 |
1 5
|
ax-mp |
|- ( 0R .R 0R ) = 0R |
| 7 |
6
|
oveq2i |
|- ( -1R .R ( 0R .R 0R ) ) = ( -1R .R 0R ) |
| 8 |
|
m1r |
|- -1R e. R. |
| 9 |
|
00sr |
|- ( -1R e. R. -> ( -1R .R 0R ) = 0R ) |
| 10 |
8 9
|
ax-mp |
|- ( -1R .R 0R ) = 0R |
| 11 |
7 10
|
eqtri |
|- ( -1R .R ( 0R .R 0R ) ) = 0R |
| 12 |
11
|
oveq2i |
|- ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) = ( ( A .R B ) +R 0R ) |
| 13 |
|
mulclsr |
|- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) e. R. ) |
| 14 |
|
0idsr |
|- ( ( A .R B ) e. R. -> ( ( A .R B ) +R 0R ) = ( A .R B ) ) |
| 15 |
13 14
|
syl |
|- ( ( A e. R. /\ B e. R. ) -> ( ( A .R B ) +R 0R ) = ( A .R B ) ) |
| 16 |
12 15
|
eqtrid |
|- ( ( A e. R. /\ B e. R. ) -> ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) = ( A .R B ) ) |
| 17 |
|
mulcomsr |
|- ( 0R .R B ) = ( B .R 0R ) |
| 18 |
|
00sr |
|- ( B e. R. -> ( B .R 0R ) = 0R ) |
| 19 |
17 18
|
eqtrid |
|- ( B e. R. -> ( 0R .R B ) = 0R ) |
| 20 |
|
00sr |
|- ( A e. R. -> ( A .R 0R ) = 0R ) |
| 21 |
19 20
|
oveqan12rd |
|- ( ( A e. R. /\ B e. R. ) -> ( ( 0R .R B ) +R ( A .R 0R ) ) = ( 0R +R 0R ) ) |
| 22 |
|
0idsr |
|- ( 0R e. R. -> ( 0R +R 0R ) = 0R ) |
| 23 |
1 22
|
ax-mp |
|- ( 0R +R 0R ) = 0R |
| 24 |
21 23
|
eqtrdi |
|- ( ( A e. R. /\ B e. R. ) -> ( ( 0R .R B ) +R ( A .R 0R ) ) = 0R ) |
| 25 |
16 24
|
opeq12d |
|- ( ( A e. R. /\ B e. R. ) -> <. ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) , ( ( 0R .R B ) +R ( A .R 0R ) ) >. = <. ( A .R B ) , 0R >. ) |
| 26 |
4 25
|
eqtrd |
|- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( A .R B ) , 0R >. ) |