Metamath Proof Explorer


Theorem 1lt2nq

Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion 1lt2nq 1𝑸<𝑸1𝑸+𝑸1𝑸

Proof

Step Hyp Ref Expression
1 1lt2pi 1𝑜<𝑵1𝑜+𝑵1𝑜
2 1pi 1𝑜𝑵
3 mulidpi 1𝑜𝑵1𝑜𝑵1𝑜=1𝑜
4 2 3 ax-mp 1𝑜𝑵1𝑜=1𝑜
5 addclpi 1𝑜𝑵1𝑜𝑵1𝑜+𝑵1𝑜𝑵
6 2 2 5 mp2an 1𝑜+𝑵1𝑜𝑵
7 mulidpi 1𝑜+𝑵1𝑜𝑵1𝑜+𝑵1𝑜𝑵1𝑜=1𝑜+𝑵1𝑜
8 6 7 ax-mp 1𝑜+𝑵1𝑜𝑵1𝑜=1𝑜+𝑵1𝑜
9 1 4 8 3brtr4i 1𝑜𝑵1𝑜<𝑵1𝑜+𝑵1𝑜𝑵1𝑜
10 ordpipq 1𝑜1𝑜<𝑝𝑸1𝑜+𝑵1𝑜1𝑜1𝑜𝑵1𝑜<𝑵1𝑜+𝑵1𝑜𝑵1𝑜
11 9 10 mpbir 1𝑜1𝑜<𝑝𝑸1𝑜+𝑵1𝑜1𝑜
12 df-1nq 1𝑸=1𝑜1𝑜
13 12 12 oveq12i 1𝑸+𝑝𝑸1𝑸=1𝑜1𝑜+𝑝𝑸1𝑜1𝑜
14 addpipq 1𝑜𝑵1𝑜𝑵1𝑜𝑵1𝑜𝑵1𝑜1𝑜+𝑝𝑸1𝑜1𝑜=1𝑜𝑵1𝑜+𝑵1𝑜𝑵1𝑜1𝑜𝑵1𝑜
15 2 2 2 2 14 mp4an 1𝑜1𝑜+𝑝𝑸1𝑜1𝑜=1𝑜𝑵1𝑜+𝑵1𝑜𝑵1𝑜1𝑜𝑵1𝑜
16 4 4 oveq12i 1𝑜𝑵1𝑜+𝑵1𝑜𝑵1𝑜=1𝑜+𝑵1𝑜
17 16 4 opeq12i 1𝑜𝑵1𝑜+𝑵1𝑜𝑵1𝑜1𝑜𝑵1𝑜=1𝑜+𝑵1𝑜1𝑜
18 13 15 17 3eqtri 1𝑸+𝑝𝑸1𝑸=1𝑜+𝑵1𝑜1𝑜
19 11 12 18 3brtr4i 1𝑸<𝑝𝑸1𝑸+𝑝𝑸1𝑸
20 lterpq 1𝑸<𝑝𝑸1𝑸+𝑝𝑸1𝑸/𝑸1𝑸<𝑸/𝑸1𝑸+𝑝𝑸1𝑸
21 19 20 mpbi /𝑸1𝑸<𝑸/𝑸1𝑸+𝑝𝑸1𝑸
22 1nq 1𝑸𝑸
23 nqerid 1𝑸𝑸/𝑸1𝑸=1𝑸
24 22 23 ax-mp /𝑸1𝑸=1𝑸
25 24 eqcomi 1𝑸=/𝑸1𝑸
26 addpqnq 1𝑸𝑸1𝑸𝑸1𝑸+𝑸1𝑸=/𝑸1𝑸+𝑝𝑸1𝑸
27 22 22 26 mp2an 1𝑸+𝑸1𝑸=/𝑸1𝑸+𝑝𝑸1𝑸
28 21 25 27 3brtr4i 1𝑸<𝑸1𝑸+𝑸1𝑸