Metamath Proof Explorer


Theorem 1lt2pi

Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion 1lt2pi 1𝑜<𝑵1𝑜+𝑵1𝑜

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 nna0 1𝑜ω1𝑜+𝑜=1𝑜
3 1 2 ax-mp 1𝑜+𝑜=1𝑜
4 0lt1o 1𝑜
5 peano1 ω
6 nnaord ω1𝑜ω1𝑜ω1𝑜1𝑜+𝑜1𝑜+𝑜1𝑜
7 5 1 1 6 mp3an 1𝑜1𝑜+𝑜1𝑜+𝑜1𝑜
8 4 7 mpbi 1𝑜+𝑜1𝑜+𝑜1𝑜
9 3 8 eqeltrri 1𝑜1𝑜+𝑜1𝑜
10 1pi 1𝑜𝑵
11 addpiord 1𝑜𝑵1𝑜𝑵1𝑜+𝑵1𝑜=1𝑜+𝑜1𝑜
12 10 10 11 mp2an 1𝑜+𝑵1𝑜=1𝑜+𝑜1𝑜
13 9 12 eleqtrri 1𝑜1𝑜+𝑵1𝑜
14 addclpi 1𝑜𝑵1𝑜𝑵1𝑜+𝑵1𝑜𝑵
15 10 10 14 mp2an 1𝑜+𝑵1𝑜𝑵
16 ltpiord 1𝑜𝑵1𝑜+𝑵1𝑜𝑵1𝑜<𝑵1𝑜+𝑵1𝑜1𝑜1𝑜+𝑵1𝑜
17 10 15 16 mp2an 1𝑜<𝑵1𝑜+𝑵1𝑜1𝑜1𝑜+𝑵1𝑜
18 13 17 mpbir 1𝑜<𝑵1𝑜+𝑵1𝑜