Metamath Proof Explorer


Theorem adderpq

Description: Addition is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion adderpq /𝑸A+𝑸/𝑸B=/𝑸A+𝑝𝑸B

Proof

Step Hyp Ref Expression
1 nqercl A𝑵×𝑵/𝑸A𝑸
2 nqercl B𝑵×𝑵/𝑸B𝑸
3 addpqnq /𝑸A𝑸/𝑸B𝑸/𝑸A+𝑸/𝑸B=/𝑸/𝑸A+𝑝𝑸/𝑸B
4 1 2 3 syl2an A𝑵×𝑵B𝑵×𝑵/𝑸A+𝑸/𝑸B=/𝑸/𝑸A+𝑝𝑸/𝑸B
5 enqer ~𝑸Er𝑵×𝑵
6 5 a1i A𝑵×𝑵B𝑵×𝑵~𝑸Er𝑵×𝑵
7 nqerrel A𝑵×𝑵A~𝑸/𝑸A
8 7 adantr A𝑵×𝑵B𝑵×𝑵A~𝑸/𝑸A
9 elpqn /𝑸A𝑸/𝑸A𝑵×𝑵
10 1 9 syl A𝑵×𝑵/𝑸A𝑵×𝑵
11 adderpqlem A𝑵×𝑵/𝑸A𝑵×𝑵B𝑵×𝑵A~𝑸/𝑸AA+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸B
12 11 3exp A𝑵×𝑵/𝑸A𝑵×𝑵B𝑵×𝑵A~𝑸/𝑸AA+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸B
13 10 12 mpd A𝑵×𝑵B𝑵×𝑵A~𝑸/𝑸AA+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸B
14 13 imp A𝑵×𝑵B𝑵×𝑵A~𝑸/𝑸AA+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸B
15 8 14 mpbid A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸B
16 nqerrel B𝑵×𝑵B~𝑸/𝑸B
17 16 adantl A𝑵×𝑵B𝑵×𝑵B~𝑸/𝑸B
18 elpqn /𝑸B𝑸/𝑸B𝑵×𝑵
19 2 18 syl B𝑵×𝑵/𝑸B𝑵×𝑵
20 adderpqlem B𝑵×𝑵/𝑸B𝑵×𝑵/𝑸A𝑵×𝑵B~𝑸/𝑸BB+𝑝𝑸/𝑸A~𝑸/𝑸B+𝑝𝑸/𝑸A
21 20 3exp B𝑵×𝑵/𝑸B𝑵×𝑵/𝑸A𝑵×𝑵B~𝑸/𝑸BB+𝑝𝑸/𝑸A~𝑸/𝑸B+𝑝𝑸/𝑸A
22 19 21 mpd B𝑵×𝑵/𝑸A𝑵×𝑵B~𝑸/𝑸BB+𝑝𝑸/𝑸A~𝑸/𝑸B+𝑝𝑸/𝑸A
23 10 22 mpan9 A𝑵×𝑵B𝑵×𝑵B~𝑸/𝑸BB+𝑝𝑸/𝑸A~𝑸/𝑸B+𝑝𝑸/𝑸A
24 17 23 mpbid A𝑵×𝑵B𝑵×𝑵B+𝑝𝑸/𝑸A~𝑸/𝑸B+𝑝𝑸/𝑸A
25 addcompq B+𝑝𝑸/𝑸A=/𝑸A+𝑝𝑸B
26 addcompq /𝑸B+𝑝𝑸/𝑸A=/𝑸A+𝑝𝑸/𝑸B
27 24 25 26 3brtr3g A𝑵×𝑵B𝑵×𝑵/𝑸A+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸/𝑸B
28 6 15 27 ertrd A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸/𝑸B
29 addpqf +𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵
30 29 fovcl A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸B𝑵×𝑵
31 29 fovcl /𝑸A𝑵×𝑵/𝑸B𝑵×𝑵/𝑸A+𝑝𝑸/𝑸B𝑵×𝑵
32 10 19 31 syl2an A𝑵×𝑵B𝑵×𝑵/𝑸A+𝑝𝑸/𝑸B𝑵×𝑵
33 nqereq A+𝑝𝑸B𝑵×𝑵/𝑸A+𝑝𝑸/𝑸B𝑵×𝑵A+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸/𝑸B/𝑸A+𝑝𝑸B=/𝑸/𝑸A+𝑝𝑸/𝑸B
34 30 32 33 syl2anc A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸B~𝑸/𝑸A+𝑝𝑸/𝑸B/𝑸A+𝑝𝑸B=/𝑸/𝑸A+𝑝𝑸/𝑸B
35 28 34 mpbid A𝑵×𝑵B𝑵×𝑵/𝑸A+𝑝𝑸B=/𝑸/𝑸A+𝑝𝑸/𝑸B
36 4 35 eqtr4d A𝑵×𝑵B𝑵×𝑵/𝑸A+𝑸/𝑸B=/𝑸A+𝑝𝑸B
37 0nnq ¬𝑸
38 nqerf /𝑸:𝑵×𝑵𝑸
39 38 fdmi dom/𝑸=𝑵×𝑵
40 39 eleq2i Adom/𝑸A𝑵×𝑵
41 ndmfv ¬Adom/𝑸/𝑸A=
42 40 41 sylnbir ¬A𝑵×𝑵/𝑸A=
43 42 eleq1d ¬A𝑵×𝑵/𝑸A𝑸𝑸
44 37 43 mtbiri ¬A𝑵×𝑵¬/𝑸A𝑸
45 44 con4i /𝑸A𝑸A𝑵×𝑵
46 39 eleq2i Bdom/𝑸B𝑵×𝑵
47 ndmfv ¬Bdom/𝑸/𝑸B=
48 46 47 sylnbir ¬B𝑵×𝑵/𝑸B=
49 48 eleq1d ¬B𝑵×𝑵/𝑸B𝑸𝑸
50 37 49 mtbiri ¬B𝑵×𝑵¬/𝑸B𝑸
51 50 con4i /𝑸B𝑸B𝑵×𝑵
52 45 51 anim12i /𝑸A𝑸/𝑸B𝑸A𝑵×𝑵B𝑵×𝑵
53 addnqf +𝑸:𝑸×𝑸𝑸
54 53 fdmi dom+𝑸=𝑸×𝑸
55 54 ndmov ¬/𝑸A𝑸/𝑸B𝑸/𝑸A+𝑸/𝑸B=
56 52 55 nsyl5 ¬A𝑵×𝑵B𝑵×𝑵/𝑸A+𝑸/𝑸B=
57 0nelxp ¬𝑵×𝑵
58 39 eleq2i dom/𝑸𝑵×𝑵
59 57 58 mtbir ¬dom/𝑸
60 29 fdmi dom+𝑝𝑸=𝑵×𝑵×𝑵×𝑵
61 60 ndmov ¬A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸B=
62 61 eleq1d ¬A𝑵×𝑵B𝑵×𝑵A+𝑝𝑸Bdom/𝑸dom/𝑸
63 59 62 mtbiri ¬A𝑵×𝑵B𝑵×𝑵¬A+𝑝𝑸Bdom/𝑸
64 ndmfv ¬A+𝑝𝑸Bdom/𝑸/𝑸A+𝑝𝑸B=
65 63 64 syl ¬A𝑵×𝑵B𝑵×𝑵/𝑸A+𝑝𝑸B=
66 56 65 eqtr4d ¬A𝑵×𝑵B𝑵×𝑵/𝑸A+𝑸/𝑸B=/𝑸A+𝑝𝑸B
67 36 66 pm2.61i /𝑸A+𝑸/𝑸B=/𝑸A+𝑝𝑸B