Description: Addition is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | adderpq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqercl | |
|
2 | nqercl | |
|
3 | addpqnq | |
|
4 | 1 2 3 | syl2an | |
5 | enqer | |
|
6 | 5 | a1i | |
7 | nqerrel | |
|
8 | 7 | adantr | |
9 | elpqn | |
|
10 | 1 9 | syl | |
11 | adderpqlem | |
|
12 | 11 | 3exp | |
13 | 10 12 | mpd | |
14 | 13 | imp | |
15 | 8 14 | mpbid | |
16 | nqerrel | |
|
17 | 16 | adantl | |
18 | elpqn | |
|
19 | 2 18 | syl | |
20 | adderpqlem | |
|
21 | 20 | 3exp | |
22 | 19 21 | mpd | |
23 | 10 22 | mpan9 | |
24 | 17 23 | mpbid | |
25 | addcompq | |
|
26 | addcompq | |
|
27 | 24 25 26 | 3brtr3g | |
28 | 6 15 27 | ertrd | |
29 | addpqf | |
|
30 | 29 | fovcl | |
31 | 29 | fovcl | |
32 | 10 19 31 | syl2an | |
33 | nqereq | |
|
34 | 30 32 33 | syl2anc | |
35 | 28 34 | mpbid | |
36 | 4 35 | eqtr4d | |
37 | 0nnq | |
|
38 | nqerf | |
|
39 | 38 | fdmi | |
40 | 39 | eleq2i | |
41 | ndmfv | |
|
42 | 40 41 | sylnbir | |
43 | 42 | eleq1d | |
44 | 37 43 | mtbiri | |
45 | 44 | con4i | |
46 | 39 | eleq2i | |
47 | ndmfv | |
|
48 | 46 47 | sylnbir | |
49 | 48 | eleq1d | |
50 | 37 49 | mtbiri | |
51 | 50 | con4i | |
52 | 45 51 | anim12i | |
53 | addnqf | |
|
54 | 53 | fdmi | |
55 | 54 | ndmov | |
56 | 52 55 | nsyl5 | |
57 | 0nelxp | |
|
58 | 39 | eleq2i | |
59 | 57 58 | mtbir | |
60 | 29 | fdmi | |
61 | 60 | ndmov | |
62 | 61 | eleq1d | |
63 | 59 62 | mtbiri | |
64 | ndmfv | |
|
65 | 63 64 | syl | |
66 | 56 65 | eqtr4d | |
67 | 36 66 | pm2.61i | |