Metamath Proof Explorer


Theorem ltexprlem5

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 6-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 C=x|y¬yAy+𝑸xB
Assertion ltexprlem5 B𝑷ABC𝑷

Proof

Step Hyp Ref Expression
1 ltexprlem.1 C=x|y¬yAy+𝑸xB
2 1 ltexprlem1 B𝑷ABC
3 0pss CC
4 2 3 imbitrrdi B𝑷ABC
5 4 imp B𝑷ABC
6 1 ltexprlem2 B𝑷C𝑸
7 6 adantr B𝑷ABC𝑸
8 1 ltexprlem3 B𝑷xCzz<𝑸xzC
9 1 ltexprlem4 B𝑷xCzzCx<𝑸z
10 df-rex zCx<𝑸zzzCx<𝑸z
11 9 10 imbitrrdi B𝑷xCzCx<𝑸z
12 8 11 jcad B𝑷xCzz<𝑸xzCzCx<𝑸z
13 12 ralrimiv B𝑷xCzz<𝑸xzCzCx<𝑸z
14 13 adantr B𝑷ABxCzz<𝑸xzCzCx<𝑸z
15 elnp C𝑷CC𝑸xCzz<𝑸xzCzCx<𝑸z
16 5 7 14 15 syl21anbrc B𝑷ABC𝑷