Metamath Proof Explorer


Theorem ltexprlem3

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 6-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 C=x|y¬yAy+𝑸xB
Assertion ltexprlem3 B𝑷xCzz<𝑸xzC

Proof

Step Hyp Ref Expression
1 ltexprlem.1 C=x|y¬yAy+𝑸xB
2 elprnq B𝑷y+𝑸xBy+𝑸x𝑸
3 addnqf +𝑸:𝑸×𝑸𝑸
4 3 fdmi dom+𝑸=𝑸×𝑸
5 0nnq ¬𝑸
6 4 5 ndmovrcl y+𝑸x𝑸y𝑸x𝑸
7 6 simpld y+𝑸x𝑸y𝑸
8 ltanq y𝑸z<𝑸xy+𝑸z<𝑸y+𝑸x
9 2 7 8 3syl B𝑷y+𝑸xBz<𝑸xy+𝑸z<𝑸y+𝑸x
10 prcdnq B𝑷y+𝑸xBy+𝑸z<𝑸y+𝑸xy+𝑸zB
11 9 10 sylbid B𝑷y+𝑸xBz<𝑸xy+𝑸zB
12 11 impancom B𝑷z<𝑸xy+𝑸xBy+𝑸zB
13 12 anim2d B𝑷z<𝑸x¬yAy+𝑸xB¬yAy+𝑸zB
14 13 eximdv B𝑷z<𝑸xy¬yAy+𝑸xBy¬yAy+𝑸zB
15 1 eqabri xCy¬yAy+𝑸xB
16 vex zV
17 oveq2 x=zy+𝑸x=y+𝑸z
18 17 eleq1d x=zy+𝑸xBy+𝑸zB
19 18 anbi2d x=z¬yAy+𝑸xB¬yAy+𝑸zB
20 19 exbidv x=zy¬yAy+𝑸xBy¬yAy+𝑸zB
21 16 20 1 elab2 zCy¬yAy+𝑸zB
22 14 15 21 3imtr4g B𝑷z<𝑸xxCzC
23 22 ex B𝑷z<𝑸xxCzC
24 23 com23 B𝑷xCz<𝑸xzC
25 24 alrimdv B𝑷xCzz<𝑸xzC