Metamath Proof Explorer


Theorem enqex

Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion enqex ~𝑸V

Proof

Step Hyp Ref Expression
1 niex 𝑵V
2 1 1 xpex 𝑵×𝑵V
3 2 2 xpex 𝑵×𝑵×𝑵×𝑵V
4 df-enq ~𝑸=xy|x𝑵×𝑵y𝑵×𝑵zwvux=zwy=vuz𝑵u=w𝑵v
5 opabssxp xy|x𝑵×𝑵y𝑵×𝑵zwvux=zwy=vuz𝑵u=w𝑵v𝑵×𝑵×𝑵×𝑵
6 4 5 eqsstri ~𝑸𝑵×𝑵×𝑵×𝑵
7 3 6 ssexi ~𝑸V