Metamath Proof Explorer


Theorem xpex

Description: The Cartesian product of two sets is a set. Proposition 6.2 of TakeutiZaring p. 23. (Contributed by NM, 14-Aug-1994)

Ref Expression
Hypotheses xpex.1 AV
xpex.2 BV
Assertion xpex A×BV

Proof

Step Hyp Ref Expression
1 xpex.1 AV
2 xpex.2 BV
3 xpexg AVBVA×BV
4 1 2 3 mp2an A×BV